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Chapter 

16 
 

Neuroeconomics and Big Data in the Capital 
Markets 

here are some very good reasons why the business world is so enamored with the term 
“Big Data.” In the not so distant past financial firms collected their own data using 
techniques like survey design, questionnaires and sampling methods. Under this tried 
and proven historical approach the main issues for management fell into a veracity 
and validity. Today, internal data is now collected electronically – a process that 

reduces the emphasis on veracity and validity. It also means that the focal point for this new 
treasure trove of electronically collected data has shifted to analytics. When data service firms 
integrate software to make it easy (or easier) for consumers and business analyst to have 
relatively easy user-access to the vast amounts of public data available in the “cloud” and 
elsewhere, we find that new service markets are formed. For example, data sampling alone 
takes on an increasing importance as management seeks out new ways to create decision 
making models that represent the wealth generating process of the firm. The White House view 
on “Big Data” has, in part, been recognized and partly described as follows: 

“The data age has arrived. From crowd-sourced product reviews to real-time traffic 
alerts, “big data” has become a regular part of our daily lives. In 2013, researchers 
estimated that there were about 4 zettabytes of data worldwide: That’s 
approximately the total volume of information that would be created if every person 
in the United States took a digital photo every second of every day for over four 
months! The vast majority of existing data has been generated in the past few years, 
and today’s explosive pace of data growth is set to continue. In this setting, data 
science -- the ability to extract knowledge and insights from large and complex data 
sets -- is fundamentally important.” 

Read the entire release with audio here: http://www.whitehouse.gov/blog/2015/02/19/memo-us-chief-data-scientist-
dr-dj-patil-unleashing-power-data-serve-american-people 

Under President’s Obama administration the use of data to improve the operation of the U.S. 
government and its interactions with those who depend on such data has 
taken on a formal role. On 09-May-2013 the President signed Executive 
Order 13642 – an order to made open and machine-readable data the new 
default for government information. The President’s office was the first 
crate the U.S. Chief Data Scientist (CDS). This position is described as one 
that is designed: “…to reasonably source, process and leverage data in a 

T 

Chief Data Scientist 
(CDS) or Chief Data 
Officer (CDO). 

http://www.whitehouse.gov/blog/2015/02/19/memo-us-chief-data-scientist-dr-dj-patil-unleashing-power-data-serve-american-people
http://www.whitehouse.gov/blog/2015/02/19/memo-us-chief-data-scientist-dr-dj-patil-unleashing-power-data-serve-american-people
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timely fashion to enable transparency, provide security, and foster innovation for the benefit of 
the American public, in order to maximize the nations return on its investment in data.”  

The Reality of “Big Data” 
But, the move to “Big Data” is not without complexities. Immediately, analysts are thrust into 

the process of sampling and selection in order to reduce the scope of 
any subsequent analytical work. If that were not enough, “back-in-the-
day” traditional data analysts easily reflect on how numeric data came 
packaged in a tidy structured format. But today, some of the most 
important data needed for business decision models is only available 
in an unstructured format. Unstructured data is not necessarily stored 
in the traditional row-column format (e.g. a spreadsheet of historical 
stock price activity). Instead, the data may be free-flowing (e.g., video 

feeds, irregular high-frequency trades of capital market instruments) and may not have a 
uniformly defined begin and end (e.g., a market open and close). The question naturally arises, 
in this world where “Big Data” is the norm rather than the exception, as contemporary analyst 
how should we proceed to process this data in order to maximize its value to the decision unit?  

New Professional Opportunities in “Big Data” 
Ah, it used to be so well-defined and straightforward. What was so well-defined? How data 
occupied space and, subsequently, the associated analytics of this well-structured data. Owing 
to the fast growing nature of today’s data (and databases) in linear and nonlinear (or 
unstructured) formats, there is an increasing need to train new analysts who possess the skills 
to extract what is relevant, important, and challenging in the data. The impact on the modern 
post-secondary education process is immediate. Professors and teachers need to seize the 
opportunity to train tomorrow’s data scientist. Of course, that opportunity comes with a cost – 
the cost of disruption to the traditional approach of teaching students how to analyze data sets 
that are borne by years of a structured presentation.  

For the student in search of a profession with a future, it is in their best interest to seek out 
data science programs that have (or, are in the process) of meeting the challenge to teach “Big 
Data” skills. These future scientist “expect” courses to cover “Big Data,” so the market driven 
directive is already in place: re-engineer the basic analytics course or, at a minimum, 
reconstitute the existing analytics course to incorporate “Big Data” concepts. But, either way, 
the preparation of students for current and future jobs requires a dedication to “Big Data.” 

The “Big Data” Impact on Capital Market Models 
As we turn our attention to how these issues impact the capital markets, it is useful to turn 
our attention back to the study of the capital markets returns-generation process. To do this 

we first focus on a review of the venerable capital asset pricing model 
(CAPM) and its empirical estimation form generally referred to as the 
‘market model.’ One important consequence of these models is the 
assumption of “market equilibrium.” In the capital markets economic 
equilibrium can be considered a state where the market prices of 
securities are balanced by their measurable risk (of generating an 
expected return) vis á vis the overall market’s expected return. Stated 
differently, under the assumption of equilibrium, the competitive 
price of a security is strictly related to the overall characteristics of 

the market. In the early 1960’s this was an appealing thought – a capital market that tended 
toward equilibrium conditions. Later in this chapter, we ask a simple question – is this a valid 
assumption when data is “Big” and collected in (near-) real-time? 
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The CAPM in Review 

The Capital Asset Pricing Model, or CAPM, is an equilibrium model that 
describes the relationship between risk and expected return. 
Since the early 1960s the model is used extensively in the 
pricing of risky assets. The fact that the reference point for this 
model dates back to the 1960s (actually, a bit earlier) and 
intersects with the manual ticker tape (in use from 1870 to 
1970) suggests that the CAPM may be somewhat inappropriate 
for contemporary markets that are defined by global access to 
markets, high-frequency and automated trading. For example, 
a simple comparison of volume for the S&P 500 over two time 

periods, the first being Jan, 1960 to Dec, 1964 and the second being Jan, 2009 
to Dec, 2014 finds that average monthly volume increased by a factor of 1,200 
times! (See Excel table in folder – put all, or some, in an appendix).  

The history of equilibrium pricing theory is rooted in the derivation of capital 
asset pricing theory and its empirical estimation component the capital asset 
pricing model (CAPM). CAPM is constructed upon the following assumptions: 

1. All investors “Markowitz” efficient. This assumption means that all investors 
determine the same set of efficient portfolios and that 
the universally desired efficient portfolio is the one 
that is a combination of the risk-free asset and the 
tangency portfolio on the efficient set; a relationship 
that produces the linear Capital Market Line (CML). 

2. There are a large number of investors in the market 
and each is a price taker. 

3. Markets are frictionless; a condition that also includes an absence of taxes 
and transactions costs. 

4. Investors can lend and borrow at the same risk-free rate over the planned 
investment horizon. 

5. As rational utility-maximizing decision makers, investors only focus on 
expected return and variance. All investors desire investment returns but 
dislike variance (risk). 

6. All investors plan for the same single holding period and have the same 
information and beliefs about the distribution of returns (i.e., homogeneous 
expectations and beliefs). 

7. The market portfolio (tangency portfolio) consists of all publicly traded 
assets. 

What do these assumptions mean to individual investors who operate in today’s 
high frequency 24/7 trading environments? From the introductory years of the 
early 1960s, market deregulation alone leads one to ponder the effectiveness of 
assumptions about capital market efficiency (as stated above) and the 
implications for individual investor diversification decisions. The implications 
behind the market and model assumptions are fairly easy to state; however, as 
we turn our attention to the return-generating models relied upon by investors 
we will find it beneficial to enhance our study to include some of the latest 
findings from neuroscience and behavioral finance. To begin this line of 
thinking, let’s re-state the simplifying assumptions to meet the needs of 
individual market participants:  
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1.  Investors implement the Markowitz mean-variance algorithm (or a Sharpe 
simplified model) to enumerate the 
efficient frontier (set). The efficient set is 
comprised of both “corner” and 
“intermediate” portfolios. A corner 
portfolio (shown by the dots) is one on 
the efficient set that is uniquely different 
in risk-return characteristics to the 
adjoining corner portfolio. An 
intermediate portfolio (the line between 
two adjacent corner portfolios) is a portfolio between two corner portfolios. It 
can be shown that an intermediate portfolio is a linear weighted average of 
two corner portfolios. 

2. The equilibrium CML allows us to state that there is a linear relationship 
between risk and return. By definition, the market (tangency) portfolio is 
mean-variance efficient and universally desired. Hence, the expected return 
for an individual asset (security or portfolio) can be estimated based on the 
relationship between the returns of the asset and those of the market index – 
Beta. 

3. The relationship between an individual asset’s returns 
and those of the market portfolio is commonly 
referred to as the “security-market-line” or SML. The 
pricing relationship of the SML can bet expressed 
through the market model. The various forms of the 
market model are as follows: 

Model 
Definition Estimating Equation Interpretation 

Single-
Index 
Model  

( ),[ ] [ ]i f i M t fE R r E R rβ= + −  ( ),[ ] [ ]i f i M t fE R r E R rβ− = −  

Expected 
vs. 
Realized 
Returns 

( )i f i M f iR r R rβ ε− = − +  

The difference between 
expected and realized 
returns is attributable to 
the error term, iε . 

The 
Market 
Model 

( )i i i M iR Rα β ε= + +  

The intercept, iα , and the 

slope coefficient, iβ , can be 
estimated by using 
historical security and 
market returns. 

In the series of equations presented above, 𝑅𝑖 , denotes the return on any asset 
(or portfolio) i. 𝑅𝑀,𝑡 denotes the return on the market portfolio over t periods and 
𝛽𝑖 is simply the 𝑐𝑜𝑣(𝑅𝑖,𝑅𝑀)

𝑣𝑎𝑟(𝑅𝑀)
. What you have learned in the introductory course is 

that the SML explicitly states that there is a linear relationship between the 
expected return on an asset and the beta, β, of that asset with the market 
portfolio. If we define the market risk premium for the ith security as [ ]i fE R r− , 

then whenever [ ]i fE R r− > 0, the higher the beta is for an asset which, in turn, 
implies a higher expected return for the asset (and, of course, vice-versa). 
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Estimating Security Returns by Regression Analysis 
This section presents the results of using the CAPM and Market Model to predict 
asset returns. To enhance the comparison of these two important models, the 
estimation is performed across three security tickers: IBM, STX and UTX. 

CAPM  

Using the CAPM model, where Beta is the primary determinant of expected 
return, it is not unusual to find predictions for annual expected returns 
calculated using only the computed beta and the observed risk-free rate.  

Asset Model Results 

CAPM ( ),[ ] [ ]i f i M t fE R r E R rβ= + −  

International Business 
Machines ( )[ ] 1.0% 0.86 9.0% 1.0% 7.88%IBME R = + − =  

Seagate Technologies ( )[ ] 1.0% 2.32 9.0% 1.0% 18.56%STXE R = + − =  

United Technologies 
Corporation ( )[ ] 1.0% 1.10 9.0% 1.0% 9.80%UTXE R = + − =  

For the calculations above, the risk-free rate is stated at 1.0% with the 
annualized beta coefficients provided by Yahoo! Finance. 

Market Model 

Let us state the regression equation for the market model as follows: 

, , , ,i t i i M M t i tR Rα β ε= + + , where ,i tε ~ iid N(0,σ2), and ,i tε  is independent of ,M tR .  

The notation iid implies that the error term from the regression analysis is 
independent and identically distributed. You ask, distributed in what way? The 
answer to that question is in the next part of the definition. N(0,σ2) tells us that 
the distribution is the normal (bell-shape) distribution with a mean of zero (0.0) 
and a measurable variance, σ2.  

When the market model is employed to predict a security’s return, a lot of focus 
is placed on the metric alpha, 𝛼𝑖. Alpha captures the difference between the 
predicted returns based solely on beta and the total predicted return level. 
Technically, before using alpha for policy inference, one would subtract the risk-
free rate from alpha. The result of this difference yields the excess return 
expected from the security over the risk free rate. An investment strategy 
followed by many is to search out high-alpha investment instruments. But, here 
is where we need to interject some of the quirks in relying on alpha as a policy 
tool. First, alpha is only as good as the asset’s beta measurement. Second, alpha 
cannot distinguish why an asset underperforms (e.g., incompetence, market 
anomalies, etc.). Third, alpha may or may not truly reflect managerial skill. 
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Asset Model Results 

Market Model , , , ,i t i i M M t i tR Rα β ε= + +  

International Business 
Machines ( )[ ] 1.2% 0.97 9.0% 1.0% 6.56%IBME R = − + − =  

Seagate Technologies ( )[ ] 0.0% 2.31 9.0% 1.0% 18.48%STXE R = + − =  

United Technologies 
Corporation ( )[ ] 0.0% 1.14 9.0% 1.0% 9.12%UTXE R = + − =  

The market model results above show that alpha is a non-factor for both STX 
and UTX. By contrast, IBM produced a negative alpha estimate of -1.2%, or -
0.2% on a risk-adjusted basis. To reiterate, for the CAPM results the published 
beta from Yahoo Finance was used. The Yahoo beta is estimated by using three-
years of monthly return observations. For the market model the stock beta 
coefficients were estimated by solving a regression analysis using monthly 
returns for calendar years 2012 to 2014, inclusive. All estimated beta 
coefficients are statistically significant at the 95% confidence level when 
computed against the S&P500 market index. The alpha estimates for STX and 
UTX were not significantly significant at any confidence level. 

By observation it is clear that the CAPM and Market Model approaches yield 
different, but similar results. We should never forget that these are models, not 
reality. The usefulness of any model is ultimately determined by its ability to 
closely replicate reality (or actual outcomes). In the next section we turn our 
attention to empirical issues when “Big Data” defines the observation period. 
Specifically, we ask – does the market model remain the modeling technique of 
choice when observations are observed on a high frequency basis? To answer 
this question the analytic process turns to recent advances in the field of 
neuroscience. 
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Capital Markets in Transition: Neuroscience Influences 

The study of neuroeconomics (and neurofinance) is an outgrowth of research 
stemming from the relatively young but expanding field of neuroscience. While 
questions about how we hear, feel, hurt, move, learn, remember and forget are 
as old as the study of philosophy itself, the ability to tie it all together around 
the human brain remains rather novel and new. It is well known that 
philosophers and scientist from Ancient Greece to the Renaissance to the 
Nineteenth Century have proposed scientific inquiry into the inner workings of 
the human brain. Today, the evolution of this study has brought us to a modern 
day characterization of neuroscience and the professionals who are dedicated to 
the study of the brain – neuroscientist. 

Because understanding the workings of the brain and central nervous system is 
such a vast field of study, the modern-day 
neuroscientist is generally a specialist. The 
recognized neuroscience medical specialties 
include the: neurologist, psychiatrist, 
neurosurgeon and neuropathologist. As you 
might imagine, the field also encompasses a 
great deal of discovery research. To that end, 
there are different career paths in the alternative 
types of experimental neuroscience. The list here 
is a bit more expansive than just the medical 

sub-divisions. More closely tied to the role of the modern capital market analyst 
is the field of computational neuroscience. But, within the realm of 
computational sciences, the list of other experimental neuroscience practitioners 
includes, but is not limited to: the Psychophysicist, the Molecular 
Neurobiologist, and the Neuropharmacologists.  

As an interdisciplinary science, Neuroeconomics joins the study of economics, 
neuroscience and psychology in a manner that focuses on how individuals make 
economic decision. This objective can be met in many ways. For example, 
neuroscientist often attempt to build biological models of decision-making and 
then test such models in economic environments. The neuroscience approach in 
economic decision making has gained traction with each and every modern-day 
financial and economic crisis. Many pundits have asked: “If financial decisions 
and capital markets are driven by rational decisions in an equilibrium-based 
market, then what explains the apparent irrationality of the developing crisis? 

Early on the approach was to focus on behavioral economics as an approach 
designed to incorporate psychological and emotional factors into models of 
individual decision-making. By the decade of the 1990s, the tools of 
neurobiology spurred on the study and analysis of molecular and physiological 
mechanisms on decision-making. Hence, neuroeconomics served as a 
convergence point between the neural and social sciences in an attempt to 
classify and predict financial decisions involving, at a minimum, risk-reward 
profiles. The scientific process of neuroeconomics emerged in parallel with the 
scientific approach relied upon by the biological scientist: observation, 
replication followed by interpretation. 

In the next section we take some of what we have learned and apply it to the 
always necessary study of financial time series analysis. Students of the capital 
markets must have a keen understanding of how to process a time series of 
items such as: pair trading, financial returns, realized volatility, credit risk 

http://www.urmc.rochester.edu/highland/departments-centers/neurology/what-is-a-neurologist.aspx
http://en.wikipedia.org/wiki/Psychiatrist
http://en.wikipedia.org/wiki/Neurosurgery
http://en.wikipedia.org/wiki/Neuropathology
http://en.wikipedia.org/wiki/Psychophysics
http://en.wikipedia.org/wiki/Molecular_neuroscience
http://en.wikipedia.org/wiki/Molecular_neuroscience
http://en.wikipedia.org/wiki/Neuropharmacology
http://en.wikipedia.org/wiki/Neuroeconomics
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modeling, and more. The section begins with a short view of contemporary 
approaches using the well known and easily applied exponential smoothing 
family of techniques. This includes the application of a moving average. Quickly 
the section advances to the use of more modern nonlinear methods known as 
artificial neural networks (ANN). Greater definition of this neuroscience inspired 
approach is provided later. 

Applied Neuroeconomics: Modelling with Artificial Neural Networks 
An artificial neural network (ANN) is an information-processing paradigm that is 
designed to emulate some of the observed properties of the mammalian brain. 
First proposed in the early 1950's it was not until the technology revolution of 
the 1980's that a multitude of alternative ANN methods were spawned to solve a 
wide variety of complex real-world problems. Today, the contemporary literature 
on ANNs is replete with successful reports of applications to problems that are 
too complex for conventional algorithmic methods or for which an algorithmic 
specification is too complex for practical implementation. The robustness of the 
ANN method under difficult modeling conditions is also well documented. For 
example, ANNs have proven extremely resilient against distortions introduced by 
noisy data. In short, the ANN paradigm has developed a track-record as a good 
pattern recognition engine, a robust classifier, and an expert functional agent in 
prediction and system modeling where the physical processes are not easily 
understood or are highly complex. 

At the heart of these impressive results is the learning process. The algorithmic 
learning process is achieved during an iterative training phase where 
adjustments are made to the synaptic connection weights that exist between the 
neurons. These connection weights represent the imputed knowledge that is 
required to solve specific problems. The radial basis function artificial neural 

network (RANN) is a nonlinear method that presents 
its output as a linear combination of the radial basis 
functions and neuron parameters. RANNs are used 
for: a) function approximation; b) time series 
prediction; c) classification; and, c) system control. 

WinORS supports two basic neural network algorithms. First, there is a basic 
implementation of the venerable Backpropagation method. The featured ANNs in 
WinORS are the four Kajiji-RANNs (with emphasis on the K4-RANN) and the 
Kohonen self-organizing map (K-SOM). The K-SOM method is used solely for 
classification problems (i.e., can be classify period returns into industry 
groupings). Because our focus is to identify a suitable replacement for the 
‘market model’ in the face of Big Data (function approximation and time series 
prediction of expected returns), in the next section we specifically address the 
four versions of the supported RANN algorithms with a detailed look at the 
senior most approach, the K4-RANN. 

Radial Basis Function Artificial Neural Network in WinORSe-AI 
ANNs represent a class of machine learning algorithms that are inspired by 
biological neural networks. We note that a biological neural network is, at its 
core, the brain and central nervous system of animals. This machine learning 
approach is designed to accept (or estimate) functions that rely upon some 
number of inputs that produce one or more outputs. As you might imagine, 
there are a number of different ways to “conceptualize” just how the brain (that 

RANN: Radial Basis 
Artificial Neural Network 
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is, the nervous system) might pool together all of these inputs, the implied data 
communication and implied weightings to generate a specific output(s). The 
intent of this chapter is not designed to introduce and compare alternative 
design methodologies; however, it is typical to hear of networks defined as: 
Radial Basis Function (RBF) networks; Kohonen self-organizing maps (K-SOMs); 
Recurrent neural networks (RNN); and more. To meet the specific purposes of 
this study, the only network topology of interest is the RBF-ANN. From this 
point forward we refer to this network topology as the RANN. 

Multilayer Perceptron Univariate RANN 

  
By review of figure XX, we show how a multilayer perceptron network can have 
several hidden layers whereas the RANN has but a single hidden-layer.  

High Frequency Finance 

While we do not explore the defining research over the decades since the 
introduction of the theory, it is safe to say that such an assumption is dissipated 
by many factors – high frequency and “Big Data” measurements being just one 
of those reasons. So if CAPM, while remaining an important contributor to low-
frequency analysis is not dead, what do you do when you are obligated to work 
in a high-frequency (second-by-second, minute-by-minute, etc.) “Big Data” 
environment? 

Today, high frequency finance is “Big Data” finance. The use of the term “Big 
Data” conjures up many different opinions about just what constitutes the 
demarcation from large data to “Big Data.” To get a uniform set of definitions in 
place this chapter, as other chapters in this book, will turn primarily to the free 
encyclopedia, Wikipedia. To begin, Wikipedia provides us with a good succinct 
definition of Big Data: “Big Data usually includes data sets with sizes beyond the 
ability of commonly used software tools to capture, curate, manage, and process 
data with a tolerable elapsed time.” While the Wikipedia description goes on to 
develop the characteristics of “Big Data”, when we apply the concept to financial 
returns, we find that the following 3-V’s characterize what is most important to 
the market analyst: 

Characteristic Meaning 
Volume The quantity of data generated 
Velocity The speed of generation of data 
Veracity The quality of the data being captured 

http://en.wikipedia.org/wiki/Big_data
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In our earlier econometric modeling experiment (estimating the market model 
with 61 observations) the data set was stored in an Excel file and the actual data 
represented monthly period returns. As we turn our attention to high frequency 
finance where observations are recorded as they occur, the time-scale of the 
data may be reduced to seconds (or smaller) time scale. As you can imagine, the 
(Vol)ume of the data will be magnitudes greater than the monthly observations 
downloaded from Yahoo Finance. Further, the (Vel)ocity of increase will be 
determined by the already demonstrated increasing volume of activity in stock 
trades. Lastly, like any system that goes faster and faster, there is an 
opportunity for a glitch (or two) to occur. That is, the (Ver)acity of the data may 
be called into question. To demonstrate these points consider the near high 
frequency 20-minute quotes on IBM equity in table xx. The following quotes are 
observed approximately every 20-minute over one trading day: 05-January-
2015. The normal trading hours on the New York Stock Exchange are 9:30 a.m. 
to 4:00 p.m. 

Day 
Counter Date Time AM/PM Price Volume 

(x100) 
1 1/5/2015 9:45:17 AM 162.06 2039 
2 1/5/2015 10:00:16 AM 160.27 422872 
3 1/5/2015 10:20:16 AM 159.54 697813 
4 1/5/2015 10:40:19 AM 159.80 988173 
5 1/5/2015 11:00:21 AM 159.66 1215705 
6 1/5/2015 11:20:20 AM 159.88 1379944 
7 1/5/2015 11:40:19 AM 159.73 1557971 
8 1/5/2015 12:00:18 PM 160.18 1725527 
9 1/5/2015 12:20:19 PM 159.88 1904213 
10 1/5/2015 12:40:23 PM 159.80 2010757 
11 1/5/2015 1:00:20 PM 159.64 2205159 
12 1/5/2015 1:20:16 PM 159.47 2344129 
13 1/5/2015 1:40:22 PM 159.43 2520571 
14 1/5/2015 2:00:19 PM 159.62 2633047 
15 1/5/2015 2:20:56 PM 159.52 2771483 
16 1/5/2015 2:40:16 PM 159.53 2921194 
17 1/5/2015 3:00:16 PM 159.36 3065426 
18 1/5/2015 3:20:19 PM 159.26 3212732 
19 1/5/2015 3:40:19 PM 159.52 3462765 
20 1/5/2015 4:05:16 PM 159.71 3856652 

An observation period of 20-minutes intuitively means that the database will 
record 20 trades per day. With approximately 250 trading days per year, a one-
year data set for IBM would measure approximately 5,000 entries per data 
element. Three- and ten-year data count would require 15,000 and 50,000 
entries, respectively. Clearly, in a commercial scale system where literally 
thousands of securities across multiple types (ETFs, equities, derivatives, etc.) 
are being tracked the volume of data is enormous and the velocity of its change 
is often measured by the second (or less) over a 24/7 trading cycle. As an 
important contributing issue, with data reception from various global markets, 
today’s “Big Data” database systems all must check the veracity of the received 
data. That is, for example, the managing software behind these systems must 
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ask question such as: is every price recorded within an acceptable statistical 
range? Referring back to table xx, what should the system do if, say, an 
erroneous price of $500 was recorded at 02:20:56? Clearly, a set of verification 
routines would signal an outlier and subsequently “clean” the data based on a 
set of proprietary algorithms. 

Compared to some marketing data, like the collection of mouse clicks and 
Internet URLs visited, financial data like that in table xx does not appear to be 
overly complex (or unstructured). The data is well organized; each observation 
comes at a pre-defined time-scale; and, the data seems to be relatively clean. 
This is in contrast to data that comes at irregular intervals and reflects the 
impulses of both expert and non-expert human beings. But, in our financial 
studies we learned that the real issue to study lies in understanding the time-
series properties of individual time series as well as the correlated structure 
among a sample of financial assets where each is measured over similar time 
slices. This makes for a relatively interesting and complex modeling study. 

Big Data and the Market Model for Predicting Asset Returns 
The choice of which models to use when the data scientist is faced with Big Data 
is divergent and growing more complex by the day. When data volume grows, as 
it has with a move to 20-minute time scale aggregation, the use of the simple 
regression model becomes suspect to inadequate for the purpose of estimating 
future returns. To exemplify this statement, in table xx the results of estimating 
the market model over 15,373 observations is presented. Note how both the 
intercept is negative and close to zero (-3.5401E-05). The regression parameter 
is positive and small (0.0284). Importantly, both are statistically insignificant 
(not significantly different than 0.00). For completeness we should also note that 
the explanatory power of the model is almost nil. That is, the adjusted R-Square 
is 5.0538E-05 (which is pretty close to zero). 

 

, , ,3.5401 05 0.0284i t M t i tR E R ε= − − + +  

In the absence of a statistically reliable market model, we must ponder if there is 
an alternative modelling methodology available to help define a “new normal” of 
high-frequency “Big Data” finance. We turn to neuroscience, specifically, 
neuroeconomics for some possible answers. 
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Big Data and RANN Estimation of the Market Model 
The Kajiji-4 radial basis function artificial neural network (K4-RANN) provides 
an excellent tool by which to replace the OLS estimation of the market model. By 
definition, RANNs do not depend upon parametric assumptions (e.g., a Gaussian 
distribution of residual error terms). The network-based RANN is a nonlinear 
mapping method that produces linear and additive weights. In short, the K4-
RANN is a nonlinear regression method that returns a linear-additive function. 
The question of importance in this chapter is whether the K4-RANN can do a 
better job at estimating the high-frequency market model. 

To answer this question it is important to learn how to measure the estimating 
performance of the machine learning RANN algorithm. Table xx shows the 
results of solving eight different RANNs each with a slightly different 
combination of parameter controls. Without delving into all of the details, model 
6, is the K4-RANN model of choice to estimate the high frequency market model 
(at least for ticker IBM). The K4-RANN model parameters of importance here are: 
a) data transformation using standardize-1 method (see Appendix A for details); 
b) a radius value of 2.5; and c) the choice of the inverse multiquadric transfer 
function. Alternative model results are also shown in table xx. 

 Model 1 Model 2 Model 3 Model 4 Model 5 
Target IBM IBM IBM IBM IBM 

Computed Measures 
Lambda 1026.306 479.238 99.078 243.747 8500339.626 
Actual Error  8.39E-01  8.40E-01  8.39E-01  8.39E-01  8.39E-01 
Training Error  7.70E-11  6.91E-10  1.68E-09  1.63E-09  3.19E-09 
Validation Error  9.96E-09  1.56E-08  6.35E-09  4.46E-09  3.32E-09 
Fitness Error  6.70E-09  1.07E-08  4.81E-09  3.52E-09  3.28E-09 

Performance Measures 
Direction 0.954 0.947 0.953 0.957 0.944 
Modified Direction 0.944 0.937 0.944 0.949  .  
TDPM 0.000 0.000 0.000 0.000 0.000 
R-Square 99.98% 99.96% 99.98% 99.99% 100.00% 
AIC -78778.995 -76806.661 -80162.806 -81463.920 -81770.536 
Schwarz -78766.316 -76793.982 -80150.127 -81451.241 -81757.857 
Theil 0.01372 0.01737 0.01163 0.00995 0.00959 
MAPE 24.43637 20.48652 24.81819 22.84862 22.93782 

Model Characteristics 
Training (N) 1380 1380 1380 1380 1380 
Training (%) 33.0% 33.0% 33.0% 33.0% 33.0% 
Transformation STD:1 STD:1 STD:1 STD:1 STD:1 
Min/Max/SD n/a n/a n/a n/a n/a 
Radius 1.000 0.500 1.500 2.000 2.500 

Algorithmic Settings 
Method Kajiji-4 Kajiji-4 Kajiji-4 Kajiji-4 Kajiji-4 
Error Min. Rule GCV GCV GCV GCV GCV 
Transfer Function Multiquadric Multiquadric Multiquadric Multiquadric Multiquadric 
Solution Range A!B4:D4189 A!B4:D4189 A!B4:D4189 A!B4:D4189 A!B4:D4189 
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Although different in magnitude, the weights, which are comparable to the OLS 
regression estimates, correspond in sign to the OLS solution. Using the AIC and 
Schwartz criterions, this model also shows superiority in overall fitting. The 
three models are only differentiated by the radius setting (2.50, 1.50 and 0.50, 
respectively). Like the earlier market model estimates on monthly data, the 
parameter weights are negative for the K4-RANN intercept (-0.018 vs. -0.012) 
and positive for the slope parameter (0.014 vs. 0.97).  

Variables  Weights  Variables  Weights  Variables  Weights  
Model 6 Model 6 Model 7 Model 7 Model 8 Model 8 
GSPC 0.014 GSPC 0.008 GSPC 0.126 
Time -0.018 Time -0.011 Time -0.150 

, , ,0.018 0.014i t M t i tR R ε= − + +  

Based on an interpretation of performance measures commonly used in 
nonparametric statistical analysis, the K4-RANN market model using high 
frequency data is highly significant and representative of the modeled data. The 
estimated coefficients of the model are plausible and well within the scope of the 
modeled data. In summary, the K4-RANN has provided an extremely reliable and 
reasonable estimate of the two important pricing terms in a high frequency 
application – alpha and beta (systematic risk). To close this section, we remind 
the reader that the OLS results for the high-frequency experiment produced a 
statistically insignificant model by all parametric measurements. 

  

 Model 6 Model 7 Model 8 
Target IBM IBM IBM 

Computed Measures 
Lambda 21.142 190.612 29.704 
Actual Error  8.38E-01  8.38E-01  8.40E-01 
Training Error  3.60E-09  3.41E-09  1.09E-08 
Validation Error  1.50E-10  7.30E-11  6.30E-09 
Fitness Error  1.28E-09  1.17E-09  7.84E-09 

Performance Measures 
Direction 0.968 0.968 0.960 
Modified Direction  .   .   .  
TDPM 0.000 0.000 0.000 
R-Square 99.99% 99.99% 99.96% 
AIC -85680.288 -86074.138 -78120.179 
Schwarz -85667.609 -86061.459 -78107.500 
Theil 0.00601 0.00574 0.01484 
MAPE 11.38721 10.10767 26.76225 

Model Characteristics 
Training (N) 1380 1380 1380 
Training (%) 33.0% 33.0% 33.0% 
Transformation STD:1 STD:1 STD:1 
Min/Max/SD n/a n/a n/a 
Radius 2.500 1.500 0.500 

Algorithmic Settings 
Method Kajiji-4 Kajiji-4 Kajiji-4 
Error Min. Rule GCV GCV GCV 

Transfer Function Inv. 
Multiquadric 

Inv. 
Multiquadric 

Inv. 
Multiquadric 

Solution Range A!B4:D4189 A!B4:D4189 A!B4:D4189 
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APPENDIX A 

How to use RBF in WinORSe-AI 

RANNs derive from the theory of function approximation. The network is known 
as supervisory as its use is divided into two stages. First, the network is trained 
on a subset of the data. Then, the output weights extracted from the training 
exercise are applied to the remaining data, known as the test set. One advantage 
of this approach is the RANNs are very fast machine learning tools. This is a 
property that we often exploit in “Big Data” function mapping – especially when 
modeling financial time series data. 

 The single layer of hidden nodes within the RANN implement of set of radial 
basis functions (e.g. Gaussian functions). The output nodes implement linear 
summation functions. In modeling terms, this means that to achieve a function 
approximation of, for example, the returns of a stock, it is necessary to have 
inputs (e.g., the market index, the risk-free rate, and possibly more) and one 
output target (the returns of the modeled stock). The appointed task of the 
RANN is to use the volatility of the input variables to replicate the volatility of 
the target variable. In the next section we use the K4-RANN to empirically test 
whether this neuroscience based approach can handle “Big Data” estimation of 
market returns. We already know that the CAPM is not ideally suited for this 
task. 

Open A Sample File 

You may open the data file for the example presented here by using the WinORS 
web folder (File/Open/Web Data-icon on the outlook bar). The data in this file 
was imported from WinORS supported sites (see the FX and Economics data 
sub-menu off of the main Data menu). Column B presents the JPY/USD 
exchange rate where the log rate of return for this same series is presented in 
column C. Missing values in the yen-dollar exchange rate were estimated by 
using the menu tree /ACE. Similarly, following a similar menu tree created the 
ln rate of return data in column C: /ACR. Columns D and E are obtained from 
the menu tree: /DE. As with the FX data, the log (ln) rates of returns were 
created by the menu tree /ACR. 
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WinORS Variable Types 

Row 2 of the WinORS spreadsheet is often referred to as the 'variable type' row. 
This row requires a single character identifier that defines the variable (column) 
to the chosen application. In the case of the radial basis function ANN, WinORS 
requires two variable types to be set. The dependent variable (sometimes referred 
to as a target variable in neural network studies) is identified by a variable type 
of 'D' in row 2. The predictor variables require the variable type of 'I' along this 
row. Below, the other required setting to obtain a solution is discussed -- the 
range of the data. However, we first introduce the dialog box associated with the 
radial basis function method. 

 

RBF Model Execution 

To execute the RBF application on the data set given the model specification (the 
variable types that are set) as specified, follow this menu tree: /ALR  

 

The RBF Dialog Box 

The first action to take on the RBF dialog box is to set the data range (*Range) 
correctly. In the following case, the data range is incorrect for the problem 
developed as part of this example. Use the backward facing red arrow to roll-up 
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the screen. When in the rolled-up state, use the mouse (or the keyboard) to 
highlight all cells that should be considered by the solution method. 

 

Highlighting the Range 

Here we see that, at a minimum, columns C through Z are included in the 
highlighted range. This breadth of range setting includes both the target 
(dependent) variable in column C, as well as the two independent variables in 
columns F and G, respectively. NOTE: only variables that are in the range with 
valid 'variable types' along row two will be considered in the analysis. Highlight 
down to the last row desired for inclusion in the analysis. 

 

The RBF Dialog Box - Revisited 

Once the highlighting is done and you roll-down the form, the dialog box will 
show the following results. First, notice that the model will be constructed over 
the range from cell C6 on tab A to cell Z652, tab A, inclusive. 
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Expert Mode 

In order to set the ranges for the Forecast and Table, the check box for Expert 
Mode must be in the ‘on’ state (see bottom right corner). Although it was not 
shown, the form was rolled-up for a second time using the backward facing red 
arrow associated with the Forecast range. In this example the forecast range 
was set to start at the next available row (653) and only this row (a one-period 
ahead forecast). NOTE: the forecast range can be blank. That is, it is acceptable 
to only model the target data (not model and forecast). Finally, the Table is the 
range over which to build the output table. While it is possible to direct the 
output to any specific location, it is strongly suggested to leave this setting at its 
default value. 

 

Data Set Training and Validation Ranges 

 

Start the neural network analysis by apportioning approximately 1/3 (33%) of 
the data set to the supervised training phase of the analysis. The remaining 2/3 
(67%) of the data is automatically assigned to the validation phase. Use the 
provided spin control to increase (decrease) the allocation between the training 
and validation sets. Is the default proportion optimal? Unfortunately, this 
question is still open to debate. In fact, it is a major research issue in the field of 
study. The objective is to properly train the neural network. An improper 
training of the neural network may lead to an over-trained network. An over-
trained network models both the true variability as well as the noise (error) in 
the variability of the data. In the current implementation, WinORS does not 
support techniques like cross-validation to automate the process of finding the 
best demarcation point between the training and validation sets. 

Data Scaling by Transformation 

Data scaling is another important issue in neural network modeling. Currently, 
WinORS supports the following five data transformation (scaling) methods: 
Standardized – Method 1; Standardized – Method 2; Normalized – Method 1; 
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Normalized – Method 2; and, Uniform. 

 

It is possible to choose whether to apply the chosen transformation method to 
the target variable. Use the check-box to indicate Yes/No to this decision. The 
default is Yes - apply the transformation to the target variable. 

Standardized Method 1 
Method 1 is the well-known approach to creating a standardized value:  

    
( )XZ µ

σ
−

= . 

Standardized Method 2 
This method is invoked by subtracting the mean from all the data observations 
and multiplying by the square root of the inverse of the covariance matrix (∑ ). 
The square root can be found since the covariance matrix is symmetric and can 
be diagonalized. This method essentially performs a coordinate transformation of 
a distribution to a different one where the new distribution has zero mean and 
the covariance matrix is the identity matrix. Let X be any random vector. The 
whitening transform of X → Y is given by: 1/ 2 ( )TY X µ−= ∑ − , where µ is the 
mean vector. 

Data Transformations: Normalized 
Using alternative data transformation functions can produce noticeably different 
RBF solutions. WinORS supports two data normalizing methods. The following 
notation is common to the four supported techniques. 

Term Definition 
DL  Lower scaling value 
DU  Upper scaling value 
Dmin  Minimum data value 
Dmax  Maximum data value 
SL Lower headroom (%) 
SU  Upper headroom (%) 

Where the values DL and DU are defined by for all supported normalized 
transformations: 

DL = Dmin – ((Dmax – Dmin) x SL) / 100) 

DU = Dmax + ((Dmax – Dmin) x SU) / 100), 

Normalized Method 1 
This approach computes a normalized data input value (DV) from the actual data 
point (D) by: 
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DV = (D – DL) / (DU – DL). 

The upper and lower headroom percent, SL and SU, are set separately during the 
model-building exercise. Each is controlled by an associated spin control on the 
dialog form. 

Normalized Method 2 
Data is scaled to a range required by the input neurons of the RBF ANN. 
Contemporary settings for the range are -1 to 1, or, 0 to 1. As with normalized 
method 1, both DL and DU are computed as shown above. The data range over 
which the network models the transformed data (DV) is based on the settings for 
SL and SU. Specifically, the transformation is: 

DV = SL + (SU - SL)*(D- DL)/( DU - DL). 

The values for SL and SU are controlled by the use of an associated spin control 
on the dialog form.  

Uniform Transformation 
The uniform method is designed to increase data uniformity during the process 
of scaling the input data into an appropriate range for neural network analytics. 
The method utilizes a statistical measure of central tendency and variance to 
remove outliers and spread out the distribution of the data. First, the mean and 
standard deviation for the input data associated with each input are determined. 
Next, SL is then set to the mean minus some number of standard deviations. The 
number of standard deviations is set by a spin control on the dialog box. 
Similarly, SU is set to the mean plus two standard deviations. By way of 
example, assume that the calculated mean and standard deviation are 50 and 3, 
respectively. Further, assume the user arbitrarily scales with a standard 
deviation of 2. Under these settings the SL value would be 44, or (50-2*3). The 
SU value is 56, or (50+2*3). Finally, all data values less than SLare set to SL and 
all data values greater than SU are set to SU. The linear scaling described under 
Method 2 is applied to the truncated data. By clipping off the ends of the 
distribution this way, outliers are removed, causing data to be more uniformly 
distributed.  

Algorithmic Method 

Choose the desired solution method 

 

Kajiji-1 
The Kajiji-1 algorithm is an ANN extension of explicit solution for generalized 
ridge (EGR) as proposed by Hemmerle [5] for parametric regression models. The 
Hemmerle method itself is based upon the iterative global ridge regression (IGR) 
as initially proposed by Orr [81]. The Orr method, like that of Poggio and Giorsi 
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[38, 39], is an adaptation of Tikhonov’s regularization theory to the RBF ANN 
topology. 

Kajiji-2 
The Kajiji-2 method is an RBF ANN method constructed upon the unbiased 
ridge estimation (URE) of Crouse, Jin, and Hanumara [6] for parametric models. 

Kajiji-3 
Following Swindel [4], the Kajiji-3 method extends existing RBF implementations 
by incorporating a prior information matrix as means by which to augment the 
Tikhonov's regularization method as adapted to the RBF algorithmic design. The 
Kajiji-3 method is the Kajiji-1 algorithm augmented by the prior information 
matrix. 

Kajiji-4 
The Kajiji-4 method is the Kajiji-2 algorithm augmented by the prior information 
matrix (see Kajiji-3 for an important reference).  

RBF 
Framework Description 

Kajiji-1 The Hemmerle method of closed form regularization 
parameter estimation applied to a RBF ANN 

Kajiji-2 The Crouse et. al. method of closed form regularization 
parameter applied to a RBF Neural Network 

Kajiji-3 Kajiji-1 with prior information 
Kajiji-4 Kajiji-2 with prior information 

Radial Functions 

The special class of radial functions is what makes the RBF method unique. 
Radial functions decreases (increases) monotonically with distance from a 
central point. WinORS provides support for four radial functions: Gaussian, 
Cauchy, multiquadric, and inverse multiquadric. A Gaussian RBF monotonically 
decreases with distance from the center. By contrast, a multiquadric transfer 
function monotonically increases with distance from the center. Multiquadric-
type RBFs have a global response (in contrast to the Gaussian which has a local 
response) and tend to be more plausible in biological research owing to its 
characteristic of a finite response. 

 

Consider the following generalized statement of the RBF: 

( )1( ) ( ) ( )h x x c x cθ Τ −= − ℜ − , where θ is the function used (e.g., Gaussian), c is 

the center and ℜ is the metric. ( )1( ) ( )x c x cΤ −− ℜ −  is the distance between the 

input (x) and the center, c, in the metric defined by ℜ . For the Gaussian, 
( ) xz eθ −= ; for the multiquadric, 0.5( ) (1 )z zθ = + ; for the inverse multiquadric; 
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0.5( ) (1 )z zθ −= + ; and, for the Cauchy, 1( ) (1 )z zθ −= + . 

Radius 

Under the radial basis function approach, a radius scales transfer functions. For 
example, the following is a one-dimensional example given by a Gaussian 
transfer function centered at c, and scaled by a 'radius' r:  

2

2

( )( ) exp x ch x
r

 −
= − 

 
 

Error Minimization Rules 

WinORS supports four alternative algorithmic error minimization rules. GVC is 
the default method. 

Error 
Minimization 
Method 

Description 

UEV Unbiased estimate of variance 
FPE Final prediction error 
GVC generalized cross validation 
BIC Bayesian information criterion 

RBF Parameter Tab 

The solution to the RBF modeling and forecasting application is placed on the 
next available tab. The output is split into five (5) dimensions. The first 
dimension is presented on rows 1 and 2 of the RBF Parameter Tab shown below 
in figure xx.xx 

 

Dimension 1 begins on row 1 indicates the model number. Row 2 restates the 
name of the target variable. 
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The second dimension is displayed from row 4 through row 8. The variables 
displayed are: 

 

 
 

 

 

The third dimension reports on the overall performance of the RBF modeling 
application. The following characteristics are reported. 

Accuracy 
Measure 

Description 

Direction Direction is defined as the number of times the prediction 
followed the up and down movement of the underlying index.  

Modified 
Direction 

Modified Direction =  
((# of correct up predictions / # of times index up) + (# of 
correct down predictions / # times index down)) – 1  

TDPM 

TDPM is a correction weight that compensates for incorrect 
directional forecasts by overall magnitude of the movement. 
The smaller the weight, the more accurate the training phase. 
Large weights are indicative of a missed direction, an 
incorrect magnitude adjustment, or some combination of the 
two.  

R-squared Traditional coefficient of determination 

The fourth dimension summarizes the model input. 

Item Description 
Training (N) The number of cases in the training set 
Training (%) Percentage of N used in supervised training 
Transformation Method used to scale the actual data 

Headroom Scaling control for the normalize data 
transformation 

Radius Scaling used in the radial function 

The fifth dimension summarizes the settings for the chosen algorithmic method: 

Algorithmic Settings User Choice 
Method Kajiji-4 
Error Min. Rule GCV 
Transfer Function Gaussian 

Descriptor Model Characteristic 
Blank Model 
Target Variable name from the Data Sheet 

Parameter Description 
Lambda The regularization parameter 
Actual Error MSE for the entire data set 
Training Error MSE of the training data set 
Validation Error MSE of the validation set 
Fitness Error MSE of the training and validation sets 
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RBF Predicted Tab 

The RBF predicted tab presents the actual and predicted data for the current 
model. This data tab forms the foundation of the RBF diagnostic graphs. 

 

RBF Weights Tab 

The final weights determined by the training phase of the solution are presented 
on this tab. 

 

RBF Diagnostic Graphs 

The WinORS Charts menu supports pre-programmed graphs for many of the 
WinORS applications. These graphs are referred to as diagnostic graphs. Choose 
the menu tree: /CDR to display the RBF predictive ability graph. 
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Zoom-In and Zoom-Out 
For long time series, it is often useful to zoom-in and inspect a smaller part of 
the modeled relationship. To zoom the WinORS graph, follow these steps: 

1. Place the mouse in the graph window. For example, place it about 3/4 from 
the right edge of the displayed graph. 

2. Press and hold the left mouse button. 

3. Move the mouse to the right. 

4. Release the mouse button to see the zoomed image. 

5. Repeating this action with a left-oriented movement will zoom-out the graph. 
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RBF Simulation 
One of the difficult modeling issues all neural network researchers must 
confront is to determine how much of the data series should be used to train the 
network. WinORS provides a simulation option that focuses directly on locating 
the settings that produce the smallest network MSE within the simulation 
range. NOTE: The simulation option is not available when no transformation 
method is selected or it is standardized 1 or 2. 

1. Begin by selecting the data transformation method, the RBF Method, Error 
Minimization Rule, and the desired Transfer Function. 

2. Click the checkbox next to the Simulate option. 

3. Use the spin control to set the observation from which to start the 
simulation procedure. The simulation begins from this value up to the last 
training observation (in the graphic, simulation will start at observation 100 
and continue up to 213). 

4. Click Execute to start the simulation and produce an answer. 
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Simulation Warning 

WARNING! Simulation is a time-intensive procedure. For example, in the case of 
the settings as displayed above, for each data row in the simulation range six 
RBF solutions are computed -- one for headroom percent beginning at zero 
percent up to five percent. For the exhibit above where simulation is set for data 
observations 100 to 213 (114 observation rows), a total of 684 RBF solutions will 
be computed. While the solution time for each individual execution of the RBF 
algorithm will depend on a number of factors, assume that one solution requires 
5 seconds to compute (including screen updates). Under these assumptions the 
simulation would require approximately 57 minutes to complete all operations 
(3,420 seconds). The final solution will report, the observation number and 
headroom percent combination that produced the smallest model MSE. 
Fortunately, the simulation option is only needed once (per selected 
transformation method). 

 

Simulation Results 

The simulation results are summarized in two alternative formats; one graphical 
and one tabular on the spreadsheet tab 'RBF Simulate'. 

Simulation: Graphical Results 
A graphical result of the simulation effort is presented below. This chart is 
produced by using the menu tree: CHARTS/DIAGNOSTICS/RADIAL BASIS 
FUNCTION… Choose the Simulation Results option on the pick list. A review of 
the 3-D chart shows that the smallest MSE measures are produced around 
observation 180 with a low headroom % value. The 'best' solution is found 
exactly on the 'RBF Simulate' tab. 

 

Simulation Results: Tabular 
The RBF Simulate Tab presents three columns for your review. First, the 
number of observations used in the current simulation is presented under the 
column titles 'Training Size'. In the specific case of the simulation discussed in 
this document, the next column focuses on the 'Headroom' simulation 
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parameter. Finally, the MSE model fitness error is presented in column D. 

The lowest fitness MSE value is highlighted in the color blue. In the case of the 
scripted analysis presented in this chapter, the lowest fitness MSE occurs with 
when solving a model with 183 training rows and minimum headroom of zero 
percent (0.0%). 
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APPENDIX B 

Early and Contemporary Time Series Modeling 
 

The elements that come into play in all forecasting methods is the concept of the 

future and time; uncertainty; and reliance on historical data. Below are some 
well-known quotes. 

Major Types of Forecasting Methods 
• Subjective Methods 

 Sales Force Composites 
 Customer Surveys 
 Jury of Executive Opinions 
 Delphi Method 
 

• Quantitative Methods 
Exponential smoothing family 
ARMA (Autoregressive-moving average) and ARIMA (Autoregressive 
integrated moving average) 
Artificial Neural Networks (ANN) 
 

Forecasting involves making the best possible judgment about some future 
event. In other words, “forecasts are numerical estimates of an event for some 
future date that can be achieved with a specified level of support and are 
reproducible.” 
"I often say that when you can measure what you are speaking about, and 
express it in numbers, you know something about it; but when you cannot 
measure it, when you cannot express it in numbers, your knowledge is of a very 
meagre and unsatisfactory kind."  

~ William Thomson, Lord Kelvin, 1824-1907 
 

"If we could first know where we are, then whither we are tending, we could 
then decide what to do and how to do it."  

~ Abraham Lincoln, 1809-1865 
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Moving Averages 

The moving average approach calculates an average of the sample observations 
and then employs that average as the forecast for the next period. The number 
of sample observations included in the calculation of the average is specified at 
the start of this process. The term MOVING average means that as a new 
observation becomes available a new average is calculated by dropping the 
oldest observation in order to include the newest one. 

Month Period Observed 
Values 

3-
Month 

MA 

5-
Month 

MA 

Log Obs 
Values 

Growth 
Series: 
0.001% 

Jan 1 262.8   2.420  2.410  
Feb 2 262.9   2.420  2.412  
Mar 3 262.6   2.419  2.415  
Apr 4 263.2 262.8  2.420  2.417  
May 5 263.9 262.9  2.421  2.420  
Jun 6 265.4 263.2 263.1 2.424  2.422  
Jul 7 266.5 264.2 263.6 2.426  2.424  
Aug 8 267.1 265.3 264.3 2.427  2.427  
Sep 9 268.5 266.3 265.2 2.429  2.429  
Oct 10 269.7 267.4 266.3 2.431  2.432  
Nov 11 270.4 268.4 267.4 2.432  2.434  
Dec 12 269.4 269.5 268.4 2.430  2.437  

Source: Business Forecasting Methods, by Jarrett, (Basil Blackwell, 1991). 
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Advantages: 

1. Data requirements are small. 

2. Better than using a simple arithmetic mean because it can be adjusted to 
reflect the observable patterns in the data. 

Disadvantages: 

1. The past n sample observations must be available. 

2. Equal weights are given to all past observations and no weight is given to 
observations earlier than period t-n+1. 

3. Assumes that the data has a stationary distribution (not always true). 

Single Exponential Smoothing 

Single parameter exponential smoothing (Unadjusted) is an easy to implement 
method of smoothing that overcomes some of the problems associated with 
moving averages. In contrast to moving averages, exponential smoothing permits 
the researcher to weight observations. It is not unusual for recent observations 
to contain more relevant information for forecasting purposes than older ones. 
The method also generates self-correcting forecasts through its ability to 
produce forecast values which reflect adjustment for earlier errors.  

Advantages: 

1. Simplifies forecasting calculations 

2. Has small data requirements 

3. Produces self-correcting forecasts with built-in adjustments that regulate 
forecast values by changing them in the opposite direction of earlier errors. 

4. Simple! Only the last period’s forecast must be saved.  

Disadvantages: 

1. Specification of the smoothing constant is a problem. Alpha close to 1 
implies that the new forecast includes a substantial adjustment for the error 
in the previous forecast. If alpha is close to zero, the new forecast will 
include only a small adjustment for error. Generally, it is suggested that if 
the smoothing constant is greater than 0.30 an alternative model should be 
used. 

2. In general the forecasts trail the pattern in the sample data. 
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Notation for Single Unadjusted Exp. Smoothing 

Notation Description 
Dt Actual value at time t 

Ft+1 Forecast value for time t+1 

α Smoothing constant (0.0 ≤ α ≤ 1.0) 
 

  Ft+1 = αDt + (1 - α)Ft-1 where F0 = D1  or user input 
 

From the above equation it is apparent that there are two specific data input 
required for the unadjusted option. These are: the smoothing constant and the 
time series base (D1) 

 

Adaptive Rate of Response Single Exponential Smoothing (ARRSES) 

This method does not require the decision-maker to specify the alpha smoothing 
constant. ARRSES automatically changes the value of the unspecified alpha by a 
predetermined weight on an on-going basis; that is, whenever there is a change 
in data pattern. The only smoothing parameter that is needed is the Beta term. 
The Beta term is the weighting factor. 

Advantages: 

• Very useful when a large number of unique items have to be predicted. 
• Excellent performance when there are a large number of observations (daily, 

monthly, etc.). 

Disadvantages: 

• Unknown smoothing constant.  
• It may not be possible to replicate the solution. 

Test Of Predictive Ability (Unadjusted)
Time Series: B

Predicted PointSeries2
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Brown’s Linear Exponential Smoothing (Double) 

Double exponential smoothing is the application of exponential smoothing to the 
single exponential values. Brown’s method provides an additional correction 
method; an approach which resembles the application of a moving average. 
Brown’s method uses the difference between the single and double smoothed 
values as an additive factor to the single smoothed value. The method further 
adjusts for the pattern in the data. 

Advantages: 

• Provides an additional correction method for a data time series. 
• Useful to account for linear trend in the data. 

Disadvantage: 

• The forecasts trail the pattern in the sample data. 

 

Test Of Predictive Ability (ARRSE)
Time Series: B

Predicted PointSeries2
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Test Of Predictive Ability (Brown's)
Time Series: B

Predicted PointSeries2

Observation
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Holts’ Two Parameter Linear Exponential Smoothing 

The Holt method is an extension to Brown’s method. The Holt approach adds a 
growth factor to the smoothing equation. The method smoothes the trend values 
directly. When growth exists in the observed values of a time series, new 
observations will be greater than the previously observed values. 

Advantages: 

• Adds a growth factor to the smoothing equation.  
• Trend values are smoothed directly (unlike the implied method in Brown) 
• Eliminates the lag in smoothing. 

Disadvantage: 

• The forecast accuracy depends on determining the correct alpha and beta 
smoothing parameters. 

 

 

  

Test Of Predictive Ability (Holt's)
Time Series: B

Predicted PointSeries2
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