
Radial Basis Funct ion Art ificia l Neural Netw orks  

An artificial neural network (ANN) is an information-processing paradigm that is designed 
to emulate some of the observed properties of the mammalian brain.  First proposed in 
the early 1950's it was not until the technology revolution of the 1980's that a multitude 
of alternative ANN methods were spawned to solve a wide variety of complex real-world 
problems.  Today, the contemporary literature on ANNs is replete with successful reports 
of applications to problems that are too complex for conventional algorithmic methods or 
for which an algorithmic specification is too complex for practical implementation.  The 
robustness of the ANN method under difficult modeling conditions is also well 
documented.  For example, ANNs have proven extremely resilient against distortions 
introduced by noisy data.  In short, the ANN paradigm has a developed a track-record as 
a good pattern recognition engine, a robust classifier, and an expert functional agent in 
prediction and system modeling where the physical processes are not easily understood 
or are highly complex.  

At the heart of these impressive results is the learning process.  The algorithmic learning 
process is achieved during an iterative training phase where adjustments are made to 
the synaptic connection weights that exist between the neurons.  These connection 
weights represent the imputed knowledge that is required to solve specific problems.  

WinORS supports two basic neural network algorithms.  First, there is a basic 
implementation of the venerable Backpropagation method.  The featured neural network 
in WinORS is from the radial basis function family.  Specifically, WinORS supports four 
versions of the Kajiji-4 radial basis function (RBF) algorithm (see, Kajiji 2000).  The user 
manual for applying the Kajiji-4 method is discussed below.  

Open the Sample File  

You may open the data file for the example presented here by using the WinORS web 
folder (File/Open/Web Data-icon on the outlook bar).  The data in this file was imported 
from WinORS supported sites (see the FX and Economics data sub-menu off of the main 
Data menu).  Column B presents the JPY/USD exchange rate where the log rate of return 
for this same series is presented in column C.  Missing values in the yen-dollar exchange 
rate were estimated by using the menu tree /ACE.  Similarly, following a similar menu 
tree created the ln rate of return data in column C: /ACR.  Columns D and E are obtained 
from the menu tree: /DE.  As with the FX data, the log (ln) rate of returns were created 
by the menu tree /ACR.    
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WinORS Variable Types  

Row 2 of the WinORS spreadsheet if often refereed to as the 'variable 
type' row.   This row requires a single character identifier that defines the 
variable (column) to the chosen application.  In the case of the radial 
basis function ANN, WinORS requires two variable types to be set.  The 
dependent variable (sometimes referred to as a target variable in neural 
network studies) is identified by a variable type of 'D' in row 2.  The 
predictor variables require the variable type of 'I ' along this row.  Below, 
the other required setting to obtain a solution is discussed -- the range of 
the data.  However, we first introduce the dialog box associated with the 
radial basis function method.    

http://www.ghdash.net
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RBF Model Execution  

To execute the RBF application on the data set given the model 
specification (the variable types that are set) as specified, follow this 
menu tree: /ALR      

 

http://www.ghdash.net
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The RBF Dialog Box   

The first action to take on the RBF dialog box is to set the data range (*Range) correctly.  
In the following case, the data range is incorrect for the problem developed as part of 
this example.  Use the backward facing red arrow to roll-up the screen.  When in the 
rolled-up state, use the mouse (or the keyboard) to highlight all cells that should be 
considered by the solution method.  

  

Highlighting the Range 

Here we see that, at a minimum, columns C through Z are included in the highlighted 
range.  This breadth of range setting includes both the target (dependent) variable in 
column C, as well as the two independent variables in columns F and G, respectively.  
NOTE: only variables that are in the range with valid 'variable types' along row two will 

http://www.ghdash.net
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be considered in the analysis.  Highlight down to the last row desired for inclusion in the 
analysis.   

    

The RBF Dialog Box -  Revisited  

Once the highlighting is done and you roll-down the form, the dialog box will show the 
following results.  First, notice that the model will be constructed over the range from cell 
C6 on tab A to cell Z652, tab A, inclusive.  

Expert Mode  

In order to set the ranges for the Forecast and Table, the check box for Expert Mode 
must be in the ‘on’ state (see bottom right corner).  Although it was not shown, the form 
was rolled-up for a second time using the backward facing red arrow associated with the 
Forecast range.  In this example the forecast range was set to start at the next 
available row (653) and only this row (a one-period ahead forecast).  NOTE: the forecast 
range can be blank.  That is, it is acceptable to only model the target data (not model 
and forecast).  Finally, the Table is the range over which to build the output table.  While 
it is possible to direct the output to any specific location, it is strongly suggested to leave 
this setting at its default value.  

http://www.ghdash.net
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Data Set Training and Validation Ranges  

  

Start the neural network analysis by apportioning approximately 1/3 (33%) of the data 
set to the supervised training phase of the analysis. The remaining 2/3 (67%) of the data 
is automatically assigned to the validation phase.  Use the provided spin control to 
increase (decrease) the allocation between the training and validation sets.  Is the 
default proportion optimal?  Unfortunately, this question is still open to debate.  In fact, it 
is a major research issue in the field of study.  The objective is to properly train the 
neural network.  An improper training of the neural network may lead to an over-trained 
network.  An over-trained network models both the true variability as well as the noise 
(error) in the variability of the data.  In the current implementation, WinORS does not 
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support techniques like cross-validation to automate the process of finding the best 
demarcation point between the training and validation sets. 

Data Scaling by Transformation 

Data scaling is another important issue in neural network modeling.  Currently, WinORS 
supports the following data transformation (scaling) methods: Standardized – Method 1; 
Standardized – Method 2; Normalized – Method 1; Normalized – Method 2; and, Uniform.  

  

It is possible to choose whether to apply the chosen transformation method to the target 
variable.  Use the check-box to indicate Yes/No to this decision.  The default is Yes - 
apply the transformation to the target variable. 

Algorithmic Method 

Choose the desired solution metho 

   

Kajiji-1

  

The Kajiji-1 alogorithm is a ANN extension of explicit solution for generalized ridge (EGR) 
as proposed by Hemmerle [5] for parametric regression models.  The Hemmerle method 
itself is based upon the iterative global ridge regression (IGR) as initially proposed by Orr 
[81].   The Orr method, like that of Poggio and Giorsi [38, 39], is an adaptation of 
Tikhonov’s regularization theory to the RBF ANN topology.  

Kajiji-2

  

The Kajiji-2 method is an RBF ANN method constructed upon the unbiased ridge 
estimation (URE) of Crouse, Jin, and Hanumara [6] for parametric models.  

Kajiji-3

  

Following Swindel [4], the Kajiji-3 method extends existing RBF implementations by 
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incorporating a prior information matrix as means by which to augment the Tikhonov's 
regularization method as adapted to the RBF algorithmic design.   The Kajiji-3 method is 
the Kajiji-1 algorithm augmented by the prior information matrix.  

Kajiji-4

  
The Kajiji-4 method is the Kajiji-2 algorithm augmented by the prior information matrix 
(see Kajiji-3 for an important reference).    

RBF Framework Description 
Kajiji- 1 The Hemmerle method of closed form regularization 

parameter estimation applied to a RBF ANN 
Kajiji- 2 The Crouse et. al. method of closed form regularization 

parameter applied to a RBF Neural Network 
Kajiji- 3 Kajiji-1 with prior information 
Kajiji- 4 Kajiji-2 with prior information 

Radial Functions 

The special class of radial functions is what makes the RBF method unique.  Radial 
functions decreases (increases) monotonically with distance from a central point.  
WinORS provides support for four radial functions: Gaussian, Cauchy, multiquadric, and 
inverse multiquadric.  A Gaussian RBF monotonically decreases with distance from the 
center.  By contrast, a multiquadric transfer function monotonically increases with 
distance from the center.  Multiquadric-type RBFs have a global response (in contrast to 
the Gaussian which has a local response) and tend to be more plausible in biological 
research owing to its characteristic of a finite response.  

  

Consider the following generalized statement of the RBF: 1( ) ( ) ( )h x x c x c , 

where  is the function used (e.g., Gaussian), c is the center and is the metric.  
1( ) ( )x c x c  is the distance between the input (x) and the center, c, in the metric 

defined by .  For the Gaussian, ( ) xz e ; for the multiquadric, 0.5( ) (1 )z z ; for the 

inverse multiquadric; 0.5( ) (1 )z z ; and, for the Cauchy, 1( ) (1 )z z .  

http://www.ghdash.net
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Radius  

Under the radial basis function approach, a radius scales transfer functions.  For 
example, the following is a one-dimensional example given by a Gaussian transfer 
function centered at c, and scaled by a 'radius' r:   

2

2

( )
( ) exp

x c
h x

r

     

Error Minimization Rules  

WinORS supports four alternative algorithmic error minimization rules.  GVC is the 
default method.  

Error Minimization Method Description 
UEV Unbiased estimate of variance 
FPE Final prediction error 
GVC generalized cross validation 
BIC Bayesian information criterion 

    

RBF Parameter Tab 

The solution to the RBF modeling and forecasting application is placed on the next 
available tab.  The output is split into five (5) dimensions.  The first dimension is 
presented on rows 1 and 2 of the output tab.  

http://www.ghdash.net
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Dimensions

  

Dimension 1 begins on row 1 indicates the model number.  Row 2 restates the name of 
the target variable.  

Descriptor Model Characteristic 
Blank Model 
Target Title Entered on the Data 

Sheet 

  

The second dimension is displayed from row 4 through row 8.  The variables displayed 
are:  

Parameter Description 
Lambda: The regularization parameter 
Actual Error: MSE of the training data set prior to 

RBF extensions 
Training Error: MSE of the training data set 
Validation Error: MSE of the validation set 
Fitness Error: MSE of the training and validation 

sets 

 

http://www.ghdash.net
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The third dimension reports on the overall performance of the RBF modeling application.  
The following characteristics are reported.  

Accuracy Measure Description 
Direction Direction is defined as the number of times the prediction 

followed the up and down movement of the underlying index.   
Modified Direction Modified Direction =  

((# of correct up predictions / # of times index up) +  
 (# of correct down predictions / # times index down)) – 1  

TDPM TDPM is a correction weight that compensates for incorrect 
directional forecasts by overall magnitude of the movement.  
The smaller the weight, the more accurate the training phase.  
Large weights are indicative of a missed direction, an incorrect 
magnitude adjustment, or some combination of the two.   

R-squared Traditional coefficient of determination 

  

The fourth dimension summarizes the model input.  

Item Description 
Training (N) The number of cases in the training 

set 
Training (%) Percentage of N used in supervised 

training 
Transformation

 

Method used to scale the actual data 
Headroom Scaling control for the normalize data 

transformation 
Radius Scaling used in the radial function 

  

The fifth and final dimension summarizes the settings for the chosen algorithmic method:  

Algorithmic Settings User Choice 
Method Kajiji-4 
Error Min. Rule GCV 
Transfer Function Gaussian 
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RBF Predicted Tab  

The RBF predicted tab presents the actual and predicted data for the current model.  This 
data tab forms the foundation of the RBF diagnostic graphs.   

    

http://www.ghdash.net
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RBF Weights  

The final weights determined by the training phase of the solution are presented on this 
tab.  

   

http://www.ghdash.net
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RBF Diagnostic Graphs 

The WinORS Charts menu supports pre-programmed graphs for many of the WinORS 
applications.  These graphs are referred to as diagnostic graphs.  Choose the menu tree: 
/CDR to display the RBF predictive ability graph.     

    

http://www.ghdash.net
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Zoom- In and Zoom-Out 

For long time series, it is often useful to zoom-in and inspect a smaller part of the 
modeled relationship.  To zoom the WinoORS graph, follow these steps:  

1. Place the mouse in the graph window.  For example, place it about 3/4 from the 
right edge of the displayed graph. 

2. Press and hold the left mouse button. 
3. Move the mouse to the right. 
4. Release the mouse button to see the zoomed image. 
5. Repeating this action with a left-oriented movement will zoom-out the graph.    

http://www.ghdash.net
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Data Transformations: Standardized 

WinORS supports two alternative methods of standardizing the data input values.  These 
are defined below as standardized method 1 and standardized method 2. 

Standardized Method 1 

Method 1 is the well-known approach to creating a standardized value: 
( )X

Z . 

Standardized Method 2 

This method is invoked by subtracting the mean from all the data observations and 
multiplying by the square root of the inverse of the covariance matrix ( ). The square 
root can be found since the covariance matrix is symmetric and can be diagonalized.  
This method essentially performs a coordinate transformation of a distribution to a 
different one where the new distribution has zero mean and the covariance matrix is the 
identity matrix.  Let X be any random vector.  The whitening transform of X 

 

Y is given 

by:  1/ 2 ( )TY X , where  is the mean vector.   
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Data Transformations: Normalized 

Using alternative data transformation functions can produce noticeably different RBF 
solutions.  WinORS supports four data normalizing methods.  The following notation is 
common to the four supported techniques.  

Term Definition 

D
L  

Lower scaling value 

D
U  

Upper scaling value 

D
min  

Minimum data value 

D
max  

Maximum data value 

SL Lower headroom (%) 

SU  Upper headroom (%) 

 

Where the values DL and DU are defined by for all supported normalized transformations:  

D
L
 = D

min 
– ((D

max 
– D

min
) x SL) / 100) 

D
U
 = D

max
 + ((D

max 
– D

min
) x SU) / 100), 

Normalized Method 1 

This approach computes a normalized data input value (DV) from the actual data point 
(D) by: 

D
V
 = (D – D

L
) / (D

U 
– D

L
). 

The upper and lower headroom percent, SL and SU, are set separately during the model-
building exercise.  Each is controlled by an associated spin control on the dialog form. 

Normalized Method 2 

Data is scaled to a range required by the input neurons of the RBF ANN.  Contemporary 
settings for the range are -1 to 1, or, 0 to 1.  As with normalized method 1, both DL and 

DU are computed as shown above.  The data range over which the network models the 

transformed data (DV) is based on the settings for SL and SU.  Specifically, the 
transformation is:  

D
V
 =  S

L
  + (S

U 
- S

L
)*(D- D

L
)/( D

U 
- D

L
).  

The values for SL and SU are controlled by the use of an associated spin control on the 

dialog form.  
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Data Transformation: Uniform Data Method 

The uniform method is designed to increase data uniformity during the process of scaling 
the input data into an appropriate range for neural network analytics.  The method 
utilizes a statistical measure of central tendency and variance to remove outliers and 
spread out the distribution of the data.  First, the mean and standard deviation for the 
input data associated with each input are determined.  Next, SL is then set to the mean 
minus some number of standard deviations.  The  number of standard deviations is set 
by a spin control on the dialog box.  Similarly, SU is set to the mean plus two standard 

deviations.  By way of example, assume that the calculated mean and standard deviation 
are 50 and 3, respectively.  Further, assume the user arbitrarily scales with a standard 
deviation of 2.  Under these settings the SL value would be 44, or (50-2*3).  The SU 
value is 56, or (50+2*3).  Finally, all data values less than SLare set to SL and all data 

values greater than SU are set to SU.  The linear scaling described under Method 2 is 

applied to the truncated data.  By clipping off the ends of the distribution this way, 
outliers are removed, causing data to be more uniformly distributed.  

The RBF Dialog Form and Sample Output 

Below is a sample view of the RBF dialog form.  The view depicted shows the input for 
normalized method 2.  
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The RBF Parameters tab -  Normalize Method 1 

Subsequent solutions are appended to the next available column on the RBF Parameter 
tab.  This is the case for the other two solution tabs as well (RBF Predicted and RBF 
Weights).  All output descriptions as are previously reviewed.   

  

RBF Diagnostic Graph -  Normalize Method 1 

For completeness and comparative purposes (against the standardized data 
transformation), the RBF diagnostic graph of actual and predicted values is displayed 
below.   

http://www.ghdash.net
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Simulation  

One of the difficult modeling issues all neural network researchers must confront is to 
determine how much of the data series should be used to train the network.  WinORS 
provides a simulation option that focuses directly on this issue.  The purpose of the 
simulation option is to locate the settings that produce the smallest network MSE within 
the simulation range.  NOTE: The simulation option is only available when one of the 
following data transformation methods is invoked: normalized method 1; normalized 
method 2; and, uniform.  

1. Begin by selecting the data transformation method, the RBF Method, Error 
Minimization Rule, and the desired Transfer Function. 

2. Click the checkbox next to the Simulate option. 
3. Use the spin control to set the observation from which to start the simulation 

procedure.  The simulation begins from this value up to the last training 
observation (in the graphic, simulation will start at observation 100 and continue 
up to 213). 

4. Click Execute to start the simulation and produce an answer.   
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Simulation Warning 

WARNING!  Simulation is a time-intensive procedure.  For example, in the case of the 
settings as displayed above, for each data row in the simulation range six RBF solutions 
are computed -- one for headroom percent beginning at zero percent up to five percent.  
For the exhibit above where simulation is set for data observations 100 to 213 (114 
observation rows), a total of 684 RBF solutions will be computed.  While the solution time 
for each individual execution of the RBF algorithm will depend on a number of factors, 
assume that one solution requires 5 seconds to compute (including screen updates).  
Under these assumptions the simulation would require approximately 57 minutes to 
complete all operations (3,420 seconds).  The final solution will report, the observation 
number and headroom percent combination that produced the smallest model MSE.  
Fortunately, the simulation option is only needed once (per selected transformation 
method).   

  

Simulation Results 

The simulation results are summarized in two alternative formats; one graphical and one 
tabular on the spreadsheet tab 'RBF Simulate'.  

Simulation: Graphical Results 

A graphical result of the simulation effort is presented below.  This chart is produced by 
using the menu tree: CHARTS/DIAGNOSTICS/RADIAL BASIS FUNCTION…  Choose the 
Simulation Results option on the pick list.  

A review of the 3-D chart shows that the smallest MSE measures are produced around 
observation 180 with a low headroom % value.  The 'best' solution is found exactly on 
the 'RBF Simulate' tab.   
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Simulation Results: Tabular 

The Simulate Tab presents three columns for your review.  First, the number of 
observations used in the current simulation is presented under the column titles 'Training 
Size'.  In the specific case of the simulation discussed in this document, the next column 
focuses on the 'Headroom' simulation parameter.  Finally, the MSE model fitness error is 
presented in column D.  

The lowest fitness MSE value is highlighted in the color blue.  In the case of the scripted 
analysis presented in this chapter, the lowest fitness MSE occurs with when solving a 
model with 183 training rows and a minimum headroom of zero percent (0.0%).      
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