Radial Basis Function Artificial Neural Networks

An artificial neural network (ANN) is an information-processing paradigm that is designed to emulate some of the observed properties of the mammalian brain. First proposed in the early 1950's it was not until the technology revolution of the 1980's that a multitude of alternative ANN methods were spawned to solve a wide variety of complex real-world problems. Today, the contemporary literature on ANNs is replete with successful reports of applications to problems that are too complex for conventional algorithmic methods or for which an algorithmic specification is too complex for practical implementation. The robustness of the ANN method under difficult modeling conditions is also well documented. For example, ANNs have proven extremely resilient against distortions introduced by noisy data. In short, the ANN paradigm has a developed a track-record as a good pattern recognition engine, a robust classifier, and an expert functional agent in prediction and system modeling where the physical processes are not easily understood or are highly complex.

At the heart of these impressive results is the learning process. The algorithmic learning process is achieved during an iterative training phase where adjustments are made to the synaptic connection weights that exist between the neurons. These connection weights represent the imputed knowledge that is required to solve specific problems.

WinORS supports two basic neural network algorithms. First, there is a basic implementation of the venerable Backpropagation method. The featured neural network in WinORS is from the radial basis function family. Specifically, WinORS supports four versions of the Kajiji-4 radial basis function (RBF) algorithm (see, Kajiji 2000). The user manual for applying the Kajiji-4 method is discussed below.

Open the Sample File

You may open the data file for the example presented here by using the WinORS web folder (File/Open/Web Data-icon on the outlook bar). The data in this file was imported from WinORS supported sites (see the FX and Economics data sub-menu off of the main Data menu). Column B presents the JPY/USD exchange rate where the log rate of return for this same series is presented in column C. Missing values in the yen-dollar exchange rate were estimated by using the menu tree /ACE. Similarly, following a similar menu tree created the In rate of return data in column C: /ACR. Columns D and E are obtained from the menu tree: /DE. As with the FX data, the log (*In*) rate of returns were created by the menu tree /ACR.

X 4	VinORS - [E:\wir	norsfx\Data\R	BFview.OR6]							
\geq	<u>File E</u> dit <u>V</u> ie	w <u>I</u> nsert Fg	ermat <u>A</u> pplicati	ions <u>⊂</u> harts	Solution <u>T</u> ool	s <u>D</u> ata <u>W</u> in	idow <u>H</u> elp			- 8 × -
114	🗇 🗁 🖪	4 H H	많 커 커	$f_{x} \stackrel{A}{} \begin{array}{c} z \\ A \end{array}$		困区困	La ?{ Zu	©	ম	
Aria	al		BI	u .00 *. 0 №	√ormal ▼	Bottom Left 🔻	<u>≤ ▼</u> □ •	Lo	ock	
Ī	j,									
Î	A!A1	=								
	A	В	С	D	E	F	G	Н		
1		JPY/USD	LN(JPY/USD)	3-MONTH TREASURY BILLS - SECONDAR [\] MARKET (DAILY)	20-YEAR TREASURY CONSTANT MATURITY (DAILY)	LN(3mosT-Bil	ILN(20-YR Treasury)			
2										
4	01/02/2001	114.750		5.690	5.460					
5	01/03/2001	114.250	-0.004	5.530	5.620	-0.029	0.029			
6	01/04/2001	115.430	0.010	5.230	5.560	-0.056	-0.011			
7	01/05/2001	116.200	0.007	4.990	5.500	-0.047	-0.011			
8	01/08/2001	116.060	-0.001	5.060	5.520	0.014	0.004			
9	01/09/2001	116.620	0.005	5.100	5.530	0.008	0.002			
10	01/10/2001	116.380	-0.002	5.150	5.600	0.010	0.013			_
٩Ľ.										
4	~	🗈 Shee	t A Sheet B	Sheet C 🖌 Sh	eet D 🖌 Sheet E	Sheet F 🖌 S	Sheet G 🖌 Sheet	:H/ I)		
								Ready		

WinORS Variable Types

Row 2 of the WinORS spreadsheet if often refereed to as the 'variable type' row. This row requires a single character identifier that defines the variable (column) to the chosen application. In the case of the radial basis function ANN, WinORS requires two variable types to be set. The dependent variable (sometimes referred to as a target variable in neural network studies) is identified by a variable type of 'D' in row 2. The predictor variables require the variable type of 'I' along this row. Below, the other required setting to obtain a solution is discussed -- the range of the data. However, we first introduce the dialog box associated with the radial basis function method.

🔀 W	'inORS - [E:\win	orsfx\Data\R	BFview.OR6]						_	
\mathbb{Z}	<u>File E</u> dit <u>V</u> ie	w <u>I</u> nsert F <u>o</u>	rmat <u>A</u> pplicat	ions <u>⊂</u> harts	Solution <u>T</u> ool	s <u>D</u> ata <u>W</u> in	dow <u>H</u> elp		-	8 × .
LTY	⊘ ⊵ 🖪		ದೀ ಸ ಸ	f≈ Al Zl	副数 2	東下東	10 26 20	© 9 F	ম	
منه ا										
JAna	Arial III III III III III III IIII IIII II									
	Solve: RBF	A!C5:H105	59 🔢 📱 🕽	s W 🗇 🖬	B 🗟 🔁	🏢 🧱				
	AIA1	=								
	A	В	С	D	E	F	G	Н	1	
1		JPY/USD	LN(JPY/USD)	3-MONTH TREASURY BILLS - SECONDAR ^N MARKET (DAILY)	20-YEAR TREASURY CONSTANT MATURITY (DAILY)	LN(JMOST-BI	LN(20-YR Treasury)			
2			D			I	I			
4	01/02/2001	114.750		5.690	5.460					
5	01/03/2001	114.250	-0.004	5.530	5.620	-0.029	0.029			
6	01/04/2001	115.430	0.010	5.230	5.560	-0.056	-0.011			
7	01/05/2001	116.200	0.007	4.990	5.500	-0.047	-0.011			
8	01/08/2001	116.060	-0.001	5.060	5.520	0.014	0.004			
9	01/09/2001	116.620	0.005	5.100	5.530	0.008	0.002			
10	01/10/2001	116.380	-0.002	5.160	5.600	0.010	0.013			-
	[
1	<u>م</u>	🗈 Sheet	t A 🖌 Sheet B 🖌	Sheet C 🖌 Sh	eet D 🖌 Sheet E	Sheet F 🖌 S	Sheet G 🖌 Sheet	:H/ I		
								Ready		

RBF Model Execution

To execute the RBF application on the data set given the model specification (the variable types that are set) as specified, follow this menu tree: /ALR

\RBFviev	v.OR(6]										
F <u>o</u> rmat	Арр	lications	⊆harts	Sol	utio	n	<u>T</u> ools	<u>D</u> ata	<u>W</u> ine	low	<u>H</u> elp	
чÇk ;	V	<u>V</u> ariable	Types			<u>**</u>	Σ	困区	2 🖾	<u>10</u>	?{]	24
- E		<u>D</u> ata Tra	ansformati	ons	۲		▼ Bo	ottom Lei	it 🖵	≤ ▼		
1660		<u>C</u> ompute	e and Fill		۲	ab		••••	•			
		<u>F</u> inance	Methods		F		. 📼		₽			
		<u>S</u> tatistica	al Methods	;	F	F		F			<u>.</u>	
LN(JF	-4	Learning	Methods		Þ		<u>R</u> adi	ial Basis I	Functio	n	R	
	X2≦I	<u>M</u> ath Pro	ogramming		۲		Back	<propog< th=""><th>ation</th><th></th><th></th><th></th></propog<>	ation			
		<u>N</u> etwork	. Algorithm	s	۲		<u>K</u> oh(onen Maj	p			
		MAF (DAI	RKET LY)	(DA	٩L		<u>G</u> en	etic Algo	rithms			

The RBF Dialog Box

The first action to take on the RBF dialog box is to set the data range (*Range) correctly. In the following case, the data range is incorrect for the problem developed as part of this example. Use the backward facing red arrow to roll-up the screen. When in the rolled-up state, use the mouse (or the keyboard) to highlight all cells that should be considered by the solution method.

*Range: Forecast	AIC6:Z652 AIC653:Z653		Patterns: Training:	Numbe	r Perc	centage 33.2%	☐ Sir 188	mulate
Table:	B!B4	X	Validation	: 432		66.8%		
Model:	General	+	Radius	1.00				
⊂ Data Tr Ir Inclu Standar	ansformation de Target rdized Method 1 _]						
Data Tr ✓ Inclu Standar RBF M C Iterat	ansformation de Target rdized Method 1 <u>-</u> ethod ive Global Ridge	Error M	1inimization	Rule	Trans G Ga	sfer Func aussian	tions —	

Highlighting the Range

Here we see that, at a minimum, columns C through Z are included in the highlighted range. This breadth of range setting includes both the target (dependent) variable in column C, as well as the two independent variables in columns F and G, respectively. NOTE: only variables that are in the range with valid 'variable types' along row two will

be considered in the analysis. Highlight down to the last row desired for inclusion in the analysis.

😿 w	inOR5 - [E:\win	orsfx\Data\R	BFview.OR6]							- D ×
2	<u>File E</u> dit <u>V</u> ie	w <u>I</u> nsert F <u>o</u>	yrmat <u>A</u> pplicat	ions <u>⊂</u> harts	<u>Solution</u> <u>T</u> ool	s <u>D</u> ata <u>W</u> in	idow <u>H</u> elp		_	₽×.
臣	🗇 🗁 📙 .	5 × ×	ರೀ ಸ ಸ	$f_{x} \stackrel{A}{\underset{Z}{\downarrow}} \stackrel{Z}{\underset{A}{\downarrow}}$		困区困	La ?{ Z	🌣 🎱 🖻	1	
Solve: RBF AIC5:H1059 🔄 🕸 🛠 🖑 🕭 🔗 📷 🔋 🧱 🗱										
	AIG21	= -0.	008688152							
	A	В	С	D	E	F	G	Н		
1		JPY/USD	LN(JPY/USD)	3-MONTH TREASURY BILLS - SECONDAR [\] MARKET (DAILY)	20-YEAR TREASURY CONSTANT MATURITY (DAILY)	LN(3mosT-Bi	ILN(20-YR Treasury)			
2			D							
4	01/02/2001	114.750		5.690	5.460					
5	01/03/2001	114.250	-0.004	5.530	5.620	-0.029	0.029			
6	01/04/2001	115.430	0.010	5.230	5.560	-0.056	-0.011			
7	01/05/2001	116.200	0.007	4.990	5.500	-0.047	-0.011			
8	01/08/2001	116.060	-0.001	5.060	5.520	0.014	0.004			
9	01/09/2001	116.620	0.005	5.100	5.530	0.008	0.002			
10	01/10/2001	116.380	-0.002	5.150	5.600	0.010	0.013			
	DA /4 4 20004	447					0.049			►
4	<u> </u>	🕒 Sheet	t A Sheet B	Sheet C 🖌 Sh	eet D 🖌 Sheet B	Sheet F 🖌 S	Sheet G 🖌 Shee	H/ II		
								Ready		

The RBF Dialog Box - Revisited

Once the highlighting is done and you roll-down the form, the dialog box will show the following results. First, notice that the model will be constructed over the range from cell C6 on tab A to cell Z652, tab A, inclusive.

Expert Mode

In order to set the ranges for the *Forecast* and *Table*, the check box for Expert Mode must be in the 'on' state (see bottom right corner). Although it was not shown, the form was rolled-up for a second time using the backward facing red arrow associated with the *Forecast* range. In this example the forecast range was set to start at the next available row (653) and only this row (a one-period ahead forecast). NOTE: the forecast range can be blank. That is, it is acceptable to only model the target data (not model and forecast). Finally, the *Table* is the range over which to build the output table. While it is possible to direct the output to any specific location, it is strongly suggested to leave this setting at its default value.

'Range:	A!C6:Z652	X	Patterns:	Number	Perc	entage	☐ Sir	nulate
Forecast	AIC653:Z653		Training:	215	•	33.2%	188	-
Table:	BIB4		Validation	: 432		66.8%		
Model:	General	•] Radius	1.00				
Data Tr	ansformation							
Data Tr Inclu Standal None	ansformation de Target dized Method 1		dinimitation	Dula	Trans	for Europ	tions	

Data Set Training and Validation Ranges

Patterns:	Number	Percentage
Training:	213	32.9%
Validation	: 434	67.1%

Start the neural network analysis by apportioning approximately 1/3 (33%) of the data set to the supervised training phase of the analysis. The remaining 2/3 (67%) of the data is automatically assigned to the validation phase. Use the provided spin control to increase (decrease) the allocation between the training and validation sets. Is the default proportion optimal? Unfortunately, this question is still open to debate. In fact, it is a major research issue in the field of study. The objective is to properly train the neural network. An improper training of the neural network may lead to an over-trained network models both the true variability as well as the noise (error) in the variability of the data. In the current implementation, WinORS does not

Data Scaling by Transformation

Data scaling is another important issue in neural network modeling. Currently, WinORS supports the following data transformation (scaling) methods: Standardized – Method 1; Standardized – Method 2; Normalized – Method 1; Normalized – Method 2; and, Uniform.

Data Transformation —				
🔽 Include Target		<u>H</u> eadroom	20	
None	•	Max Value:	0	•

It is possible to choose whether to apply the chosen transformation method to the target variable. Use the check-box to indicate Yes/No to this decision. The default is Yes - apply the transformation to the target variable.

Algorithmic Method

Choose the desired solution metho

- RBF Method	
Iterative Global Ridge	
🔿 Kajiji-1	
🔿 Kajiji-2	
🔿 Kajiji-3	
Kajiji-4	

<u>Kajiji-1</u>

The Kajiji-1 alogorithm is a ANN extension of explicit solution for generalized ridge (EGR) as proposed by Hemmerle [5] for parametric regression models. The Hemmerle method itself is based upon the iterative global ridge regression (IGR) as initially proposed by Orr [81]. The Orr method, like that of Poggio and Giorsi [38, 39], is an adaptation of Tikhonov's regularization theory to the RBF ANN topology.

<u>Kajiji-2</u>

The Kajiji-2 method is an RBF ANN method constructed upon the unbiased ridge estimation (URE) of Crouse, Jin, and Hanumara [6] for parametric models.

<u>Kajiji-3</u>

Following Swindel [4], the Kajiji-3 method extends existing RBF implementations by

incorporating a prior information matrix as means by which to augment the Tikhonov's regularization method as adapted to the RBF algorithmic design. The Kajiji-3 method is the Kajiji-1 algorithm augmented by the prior information matrix.

<u>Kajiji-4</u>

The Kajiji-4 method is the Kajiji-2 algorithm augmented by the prior information matrix (see Kajiji-3 for an important reference).

RBF Framework	Description
Kajiji-1	The Hemmerle method of closed form regularization
	parameter estimation applied to a RBF ANN
Kajiji-2	The Crouse et. al. method of closed form regularization
	parameter applied to a RBF Neural Network
Kajiji-3	Kajiji-1 with prior information
Kajiji-4	Kajiji-2 with prior information

Radial Functions

The special class of radial functions is what makes the RBF method unique. Radial functions decreases (increases) monotonically with distance from a central point. WinORS provides support for four radial functions: Gaussian, Cauchy, multiquadric, and inverse multiquadric. A Gaussian RBF monotonically decreases with distance from the center. By contrast, a multiquadric transfer function monotonically increases with distance from the center. Multiquadric-type RBFs have a global response (in contrast to the Gaussian which has a local response) and tend to be more plausible in biological research owing to its characteristic of a finite response.

- Transfer Functions -
- 🔿 Gaussian
- Cauchy
- Multiquadric
- C Inverse Multiquadric

Consider the following generalized statement of the RBF: $h(x) = \theta((x-c)^{T} \Re^{-1}(x-c))$, where θ is the function used (e.g., Gaussian), c is the center and \Re is the metric. $((x-c)^{T} \Re^{-1}(x-c))$ is the distance between the input (*x*) and the center, *c*, in the metric defined by \Re . For the Gaussian, $\theta(z) = e^{-x}$; for the multiquadric, $\theta(z) = (1+z)^{0.5}$; for the inverse multiquadric; $\theta(z) = (1+z)^{-0.5}$; and, for the Cauchy, $\theta(z) = (1+z)^{-1}$. Under the radial basis function approach, a radius scales transfer functions. For example, the following is a one-dimensional example given by a Gaussian transfer function centered at c, and scaled by a 'radius' r:

$$h(x) = \exp\left(-\frac{(x-c)^2}{r^2}\right)$$

Radius: 1.00

Error Minimization Rules

WinORS supports four alternative algorithmic error minimization rules. GVC is the default method.

Error Minimization Method	Description
UEV	Unbiased estimate of variance
FPE	Final prediction error
GVC	generalized cross validation
BIC	Bayesian information criterion

```
Error Minimization Rule
UEV
FPE
GCV
BIC
```

RBF Parameter Tab

The solution to the RBF modeling and forecasting application is placed on the next available tab. The output is split into five (5) dimensions. The first dimension is presented on rows 1 and 2 of the output tab.

01-JUN-06

www.ghdash.net

	A	B
1		Model 1
2	Target	LN(JPY/USD)
4	Computed Measures	
5	Lambda	0.000
6	Actual Error	3.83E-05
7	Training Error	3.50E-07
8	Validation Error	3.11E-07
9	Fitness Error	3.24E-07
11	Performance Measures	
12	Direction	0.904
13	Modified Direction	0.910
14	TDPM	0.000
15	R-Square	99.10%
17	Model Characteristics	
18	Training (N)	215
19	Training (%)	33.2%
20	Transformation	Standardize
21	Headroom	n/a
22	Radius	1.000
24	Algorithmic Settings	
25	Method	Kajiji-4
26	Error Min. Rule	GCV
27	Transfer Function	Gaussian
28		

Dimensions

Dimension 1 begins on row 1 indicates the model number. Row 2 restates the name of the target variable.

Descriptor	Model Characteristic
Blank	Model
Target	Title Entered on the Data Sheet

The second dimension is displayed from row 4 through row 8. The variables displayed are:

Parameter	Description
Lambda:	The regularization parameter
Actual Error:	MSE of the training data set prior to
	RBF extensions
Training Error:	MSE of the training data set
Validation Error:	MSE of the validation set
Fitness Error:	MSE of the training and validation
	sets

The third dimension reports on the overall performance of the RBF modeling application. The following characteristics are reported.

Accuracy Measure	Description
Direction	Direction is defined as the number of times the prediction
	followed the up and down movement of the underlying index.
Modified Direction	Modified Direction =
	((# of correct up predictions / # of times index up) +
	(# of correct down predictions / # times index down)) – 1
TDPM	TDPM is a correction weight that compensates for incorrect
	directional forecasts by overall magnitude of the movement.
	The smaller the weight, the more accurate the training phase.
	Large weights are indicative of a missed direction, an incorrect
	magnitude adjustment, or some combination of the two.
R-squared	Traditional coefficient of determination

The fourth dimension summarizes the model input.

Item	Description
Training (N)	The number of cases in the training set
Training (%)	Percentage of <i>N</i> used in supervised training
Transformation	Method used to scale the actual data
Headroom	Scaling control for the normalize data transformation
Radius	Scaling used in the radial function

The fifth and final dimension summarizes the settings for the chosen algorithmic method:

Algorithmic Settings	User Choice
Method	Kajiji-4
Error Min. Rule	GCV
Transfer Function	Gaussian

RBF Predicted Tab

The RBF predicted tab presents the actual and predicted data for the current model. This data tab forms the foundation of the RBF diagnostic graphs.

🔀 W	inORS - [E:\win	orsfx\Data\RBF	view.OR6]			
\mathbb{Z}	<u>File E</u> dit <u>V</u> ie	w <u>I</u> nsert F <u>o</u> rm	at <u>Application</u>	ns <u>C</u> harts <u>S</u>	olution <u>T</u> ools	<u>D</u> ata N
孫	◊ 🗁 🖪	5 x 4 0	はおゴレ		≣ ፼ Σ	困区
Aria	I	▼ 10 ▼	ВІЩ	•00 •00 No	rmal 🗾 Bo	ttom Left
	Solve: RBF	A!C5:G652	🖩 \$	W 🔿 🕏	🚽 📑 🗒	#
	CIA1	=				
	A	В	С	D	E	F
1		Model 1	Model 1	Model 2	Model 2	
2		Actual	Predicted	Actual	Predicted	
4						
5		-0.004	-0.005	-0.004	-0.006	
6		0.010	0.010	0.010	0.011	
7		0.007	0.007	0.007	0.008	
8		-0.001	-0.001	-0.001	-0.002	
9		0.005	0.005	0.005	0.005	
10		-0.002	-0.002	-0.002	-0.003	
11		0.010	0.010	0.010	0.009	
12		0.002	0.002	0.002	0.001	
13		0.009	0.009	0.009	0.009	
14		-0.013	-0.013	-0.013	-0.013	
15		0.008	0.008	0.008	0.009	
16		-0.004	-0.004	-0.004	-0.003	
▲						,
1	•	🕒 🚺 Sheet A	🖌 RBF Parame	eters A RBF Pro	edicted RBF	Weights 🖌

RBF Weights

The final weights determined by the training phase of the solution are presented on this tab.

WinOR5 - [E:\winorsfx\Data\RBFview.OR6]						
🛃 Eile	<u>E</u> dit <u>V</u> iev	w <u>I</u> nsert F <u>o</u> r	rmat <u>A</u> pplicatio	ons <u>⊂</u> harts	Solution Tools	Data
孫 🗇	🗠 🖪 d	g 🦊 🛤 (화 차 차	$f_{\mathscr{X}} \stackrel{A}{\underset{Z}{\downarrow}} \stackrel{Z}{\underset{A}{\downarrow}}$	■ 図 ∑	困
Arial		▼ 10 ▼	BIW	00 + 0 N	lormal 🔻 Bo	ttom L
Solve	e: RBF	AIC5:G652	2 🛛 📰 💲	W 🔿 👩	e 字 🔟 📋	
DIA1	1	=				
	A	В	С	D	E	
1		Variables	Weights	Variables	Weights	
2		Model 1	Model 1	Model 2	Model 2	
4		LN(3mosT-Bil	1.249	LN(3mosT-Bi	il 0.023	
5		LN(20-YR	0.730	LN(20-YR	-0.021	
6						
7						
8						
9						
10						
11						
12						
14						
15						
16						
•						
4 ⊘			A 🖌 RBF Param	ieters 🖌 RBF i	Predicted RBF	Weigh

The WinORS Charts menu supports pre-programmed graphs for many of the WinORS applications. These graphs are referred to as diagnostic graphs. Choose the menu tree: /CDR to display the RBF predictive ability graph.

Zoom-In and Zoom-Out

For long time series, it is often useful to zoom-in and inspect a smaller part of the modeled relationship. To zoom the WinoORS graph, follow these steps:

- 1. Place the mouse in the graph window. For example, place it about 3/4 from the right edge of the displayed graph.
- 2. Press and hold the left mouse button.
- 3. Move the mouse to the right.
- 4. Release the mouse button to see the zoomed image.
- 5. Repeating this action with a left-oriented movement will zoom-out the graph.

Data Transformations: Standardized

WinORS supports two alternative methods of standardizing the data input values. These are defined below as *standardized method 1* and *standardized method 2*.

Standardized Method 1

Method 1 is the well-known approach to creating a standardized value: $Z = \frac{(X - \mu)}{\sigma}$.

Standardized Method 2

This method is invoked by subtracting the mean from all the data observations and multiplying by the square root of the inverse of the covariance matrix (Σ). The square root can be found since the covariance matrix is symmetric and can be diagonalized. This method essentially performs a coordinate transformation of a distribution to a different one where the new distribution has zero mean and the covariance matrix is the identity matrix. Let *X* be any random vector. The whitening transform of $X \to Y$ is given by: $Y = \sum^{-1/2} (X - \mu)^T$, where μ is the mean vector.

Using alternative data transformation functions can produce noticeably different RBF solutions. WinORS supports four data normalizing methods. The following notation is common to the four supported techniques.

Term	Definition
D	Lower scaling value
D _U	Upper scaling value
D _{min}	Minimum data value
D _{max}	Maximum data value
SL	Lower headroom (%)
S _U	Upper headroom (%)

Where the values D_L and D_U are defined by for all supported normalized transformations:

$$D_{L} = D_{min} - ((D_{max} - D_{min}) \times S_{L}) / 100)$$
$$D_{U} = D_{max} + ((D_{max} - D_{min}) \times S_{U}) / 100),$$

Normalized Method 1

This approach computes a normalized data input value (D_v) from the actual data point (D) by:

$$D_v = (D - D_i) / (D_{ii} - D_i).$$

The upper and lower headroom percent, S_L and S_U , are set separately during the modelbuilding exercise. Each is controlled by an associated spin control on the dialog form.

Normalized Method 2

Data is scaled to a range required by the input neurons of the RBF ANN. Contemporary settings for the range are -1 to 1, or, 0 to 1. As with *normalized method* 1, both D_L and D_U are computed as shown above. The data range over which the network models the transformed data (D_V) is based on the settings for S_L and S_U . Specifically, the transformation is:

$$D_v = S_L + (S_U - S_L)^* (D - D_L) / (D_U - D_L).$$

The values for S_L and S_U are controlled by the use of an associated spin control on the dialog form.

Data Transformation: Uniform Data Method

The uniform method is designed to increase data uniformity during the process of scaling the input data into an appropriate range for neural network analytics. The method utilizes a statistical measure of central tendency and variance to remove outliers and spread out the distribution of the data. First, the mean and standard deviation for the input data associated with each input are determined. Next, S_L is then set to the mean minus some number of standard deviations. The number of standard deviations is set by a spin control on the dialog box. Similarly, S_U is set to the mean plus two standard deviations are 50 and 3, respectively. Further, assume the user arbitrarily scales with a standard deviation of 2. Under these settings the S_L value would be 44, or (50-2*3). The S_U value is 56, or (50+2*3). Finally, all data values less than S_L are set to S_L and all data values greater than S_U are set to S_U . The linear scaling described under Method 2 is applied to the truncated data. By clipping off the ends of the distribution this way, outliers are removed, causing data to be more uniformly distributed.

The RBF Dialog Form and Sample Output

Below is a sample view of the RBF dialog form. The view depicted shows the input for *normalized method* 2.

Radial Basis Model Setup	
*Range: 📃 📐	Patterns: Number Percentage 🗖 Simulate
Forecast:	Training: 0 🚔 0.0% 34 🚔
Table: B!B4	Validation: 0 0.0%
Model: General	Radius: 1.00
Data Transformation	- Network
Include Target Min ∖	/alue: 0 🔮 # of STDDE∨: 4 🚔
Normalized Method 2 💌 Max 🕯	Value: 0
RBF Method Error	Minimization Rule — Transfer Functions —
🔿 Iterative Global Ridge 🛛 🔿 UE	∨
O Kajiji-1 O FP	E Cauchy
C Kajiji-2	·∨ O Multiquadric
C Kajiji-4	C Inverse Multiquadric
* Required Input	X Cancel ? Help

The RBF Parameters tab - Normalize Method 1

Subsequent solutions are appended to the next available column on the RBF Parameter tab. This is the case for the other two solution tabs as well (RBF Predicted and RBF Weights). All output descriptions as are previously reviewed.

📈 Wi	nOR5 - [E:\winorsfx\Data\F	RBFview.OR6]
\mathbb{Z}	<u>File E</u> dit <u>V</u> iew <u>I</u> nsert F	Format Applications Charts Solution Tools Data Window H
I IY	0 0 🖪 🛃 🛤 🛤	こうざい ためい 回歴 2 話 5 話 2 ?
L Ariol		
JAna	(
	Solve: RBF AIC6: Z6	352 📗 🌹 🔍 🕐 🛃 🔐 🛄 🗒 🧱
	B!A1 =	
	A	B C D E F
1		Model 1
2	Target	LN(JPY/USD)
4	Computed Measures	7.111
5	Lambda Actual Error	1.095.00
0 7	Actual Error Training Error	1.60E-08
8	Validation Error	6.81E-08
9	Fitness Error	5.10E-08
11	Performance Measures	
12	Direction	0.981
13	Modified Direction	0.985
14	TDPM	0.000
15	R-Square	99.86%
17	Model Characteristics	
18	Training (N)	213
19	Training (%)	32.9%
20	I ransformation	Standardize
22	Padius	1,000
24	Algorithmic Settings	
24	Method	Kajiji-4
26	Error Min. Rule	GCV
27	Transfer Function	Gaussian
28		
29		
30		
31		
32		
34		
35		
36		
37		
		act &) RRE Darameters / RRE Predicted / RRE Weights / Check E
-	Course Succession	Recent Representation of the second recently and the s

RBF Diagnostic Graph - Normalize Method 1

For completeness and comparative purposes (against the standardized data transformation), the RBF diagnostic graph of actual and predicted values is displayed below.

🜠 WinORS - [WinORS Graph]	
🔀 File Edit View Insert Format Applications Charts Solution Tools Data Window Help	- 8 × -
注 ◇ ▷ 🖩 😂 🤘 鶤 鴄 お ゴ ☆ 針 🖬 🗵 Σ 匹 匧 ២ 兆 🖓 ⊘ 🛛	
Arial V 10 V B I U +00 to Normal V Bottom Right V S V Lock	
Solve: RBF 🛛 AlC5:G652 🔄 🧱 🍣 🗟 🌝 🧬 🌌 🌆 🛱 🧱	
CIC5 = -0.0048936327	
Actual and Predicted	
	¥]
-0.02 -	
-0.03 -	
20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500 520 540 560 580 600 620	 640 660
■ Actual ▲ Predicted	
Ready	

Simulation

One of the difficult modeling issues all neural network researchers must confront is to determine how much of the data series should be used to train the network. WinORS provides a simulation option that focuses directly on this issue. The purpose of the simulation option is to locate the settings that produce the smallest network MSE within the simulation range. NOTE: The simulation option is only available when one of the following data transformation methods is invoked: normalized method 1; normalized method 2; and, uniform.

- 1. Begin by selecting the data transformation method, the RBF Method, Error Minimization Rule, and the desired Transfer Function.
- 2. Click the checkbox next to the Simulate option.
- 3. Use the spin control to set the observation from which to start the simulation procedure. The simulation begins from this value up to the last training observation (in the graphic, simulation will start at observation 100 and continue up to 213).
- 4. Click Execute to start the simulation and produce an answer.

Radial Basis Model Setup				
*Range: C6:Z652	Patterns: Number Percentage 🔽 Simulate			
Forecast: C653:Z653	🗙 Training: 213 🗲 32.9% 100 룾			
Table: B!B4	X Validation: 434 67.1%			
Model: General	Radius: 1.00			
Data Transformation ——	Headroom (%)			
Include Target	Include Target Min ∀alue: 0 ◄			
Normalized Method 1	Max Value: 5			
RBF Method	Error Minimization Rule - Transfer Functions			
C Iterative Global Ridge	© UEV			
C Kajiji-1	C EPE C Cauchy			
🔿 Kajiji-2	G CCV C Multisuadria			
C Kajiji-3				
Kajiji-4	O Inverse Multiquadric			
* Required Input				

Simulation Warning

WARNING! Simulation is a time-intensive procedure. For example, in the case of the settings as displayed above, for each data row in the simulation range six RBF solutions are computed -- one for headroom percent beginning at zero percent up to five percent. For the exhibit above where simulation is set for data observations 100 to 213 (114 observation rows), a total of 684 RBF solutions will be computed. While the solution time for each individual execution of the RBF algorithm will depend on a number of factors, assume that one solution requires 5 seconds to compute (including screen updates). Under these assumptions the simulation would require approximately 57 minutes to complete all operations (3,420 seconds). The final solution will report, the observation number and headroom percent combination that produced the smallest model MSE. Fortunately, the simulation option is only needed once (per selected transformation method).

Simulation Results

The simulation results are summarized in two alternative formats; one graphical and one tabular on the spreadsheet tab 'RBF Simulate'.

Simulation: Graphical Results

A graphical result of the simulation effort is presented below. This chart is produced by using the menu tree: CHARTS/DIAGNOSTICS/RADIAL BASIS FUNCTION... Choose the Simulation Results option on the pick list.

A review of the 3-D chart shows that the smallest MSE measures are produced around observation 180 with a low headroom % value. The 'best' solution is found exactly on the 'RBF Simulate' tab.

Simulation Results: Tabular

The Simulate Tab presents three columns for your review. First, the number of observations used in the current simulation is presented under the column titles 'Training Size'. In the specific case of the simulation discussed in this document, the next column focuses on the 'Headroom' simulation parameter. Finally, the MSE model fitness error is presented in column D.

The lowest fitness MSE value is highlighted in the color blue. In the case of the scripted analysis presented in this chapter, the lowest fitness MSE occurs with when solving a model with 183 training rows and a minimum headroom of zero percent (0.0%).

🔀 WinOR5 - [E:\winorsfx\Data\RBFview.OR6]									
🔣 Е	jile <u>E</u> dit <u>V</u> iev	v <u>I</u> nsert F <u>o</u> r	mat <u>A</u> pplicatio	ns <u>C</u> harts S	olution <u>T</u> ools	<u>D</u> ata <u>W</u> indo	w <u>H</u> elp		_ 8 × .
臣	⊘ ⊵ 🖪 🤅	g 🤐 🛤 t	l ⇒i ±i	$f_{x} \stackrel{A}{\underset{Z}{\downarrow}} \stackrel{Z}{\underset{A}{\downarrow}}$	■ ፼ Σ	困らす	요 ?{[군년	\$ 9 B	
Arial VIII VIII B I U +00 100 Normal VIII Bottom Right VIII VIII VIII VIII VIII VIII VIII VI									
Solve: RBF		Alc6:Z652 🛛 🕅 💲 W 🚯 🐟 🖓 🔟 🔋 🧱							
EIB494 = 181.									
	A	В	С	D	Е	F	G	Н	
1		Training Size	Min Headroom	Fitness Error					
2									
497		182.000	1 000	2.11E-06					
498		182.000	2 000	2.11E-00					
499		182.000	3.000	2.12E-06					
500		182.000	4.000	2.13E-06					
501		182.000	5.000	2.13E-06					
502		183.000	0.000	2.11E-06					
503		183.000	1.000	2.11E-06					
504		183.000	2.000	2.12E-06					
505		183.000	3.000	2.12E-06					
506		183 000	4 000	2 13E-06					
•	.	- 🗈 🚺 Sheet	A 🖌 RBF Parar	meters 🖌 RBF I	Predicted 🖌 RE	IF Weights 🔪 R	BF Simulate /		
								Ready	