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ABSTRACT 

Unlike the markets of twenty years ago, today’s financial markets are dominated by analysts and traders who 

rely upon quantitative analytics and computational algorithms that bear interdisciplinary orientations. Prior to 

the wide-scale adoption of normative methods from fields like applied mathematics, computer science and 

neuroscience, the pedagogy of stock return predictability was guided by normative theories of rational choice.  

Across Academia the race to incorporate contemporary asset pricing theory and active experiential learning in 

the classroom setting has helped to evolve and define an academically generic approach to the study and 

management of the student managed investment fund (SMIF). The traditional SMIF was designed to assist 

students in “learning by doing” during their exposure to the knowledge-base in asset valuation, portfolio 

management, accounting, and economics.  As the theory of investment valuation expanded to include the latent 

cognitive factors that may actually influence investor trading activity, the creation of new knowledge through 

active and participatory learning transformations in the SMIF classroom did not follow suit.  Constructed on a 

neuroeconomics foundation, this research extends the pedagogy available to the active learning SMIF classroom 

by introducing a risk-mitigated near high-frequency trading (NHFT) system. Unlike the more widely discussed 

high-frequency paradigm, the NHFT model relies more on state-of-art forecasting of interval market values than 

on the raw processing speed applied to millisecond data flows.  Additionally, by recasting the use of the neuro-

inspired learning algorithm the research estimates quasi-elasticity metrics for a four-factor production-theoretic 

model to explain algorithmic trading profitability.  
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1 INTRODUCTION 

Individuals rely on efficient trading of financial securities to obtain returns within a risk 

mitigated strategy. With the onset of digital technologies and the emergence of 24/7 access to 

traded markets, the traditional buy-and-hold (BH) approach to trading and portfolio 

management found new strategic competition from professionals who advocate and practice 

active trading strategies. High frequency trading (HFT) is an extremum form of active 

trading. Further, at the extremum there is both an aggressive and passive type of HFT. 

Aggressive HFT occurs when only market orders are executed. Passive HFT is defined as 

placing only limit orders – orders that are not immediately marketable and serve only to 

provide liquidity to the market (see, Kearns, et. al. (2010) for discussion). In this study we 

focus solely on aggressive HFT. 

Absent direct human intervention, HFT relies solely on proprietary formula-driven 

trading algorithms to execute low latency trades in as little as milliseconds. Proponents of 

HFT argue that its merits are measured by increased market liquidity, broader trader 

transparency, and increased risk mitigation (for a robust review, see Biais, Foucault et al. 

(2012), Angel, Harris et al. (2011), Goldstein, Kumar et al. (2014)). Owing to HFT’s 

commitment to quantitative and computational methods as professionals seek to promote 

excellence in the use of HFT tools argue that it is the responsibility of Academia to promote a 

supporting pedagogy. Today, an important operational tool in financial education is the 

student managed investment fund, or SMIF. Typically, the SMIF is a classroom or club 

activity that applies what is taught in various investments related classes to the management 

of “real dollar” portfolios (Melton and Mackey (2010) discuss SMIF organizational 

strategies; see McCarthy, et.al (2010) for a discussion on the role of experiential learning). 

Despite a long list of potential benefits associated with hosting a SMIF, a cursory search for 

evidence on the use of breakthrough HFT strategies yields insignificant results. Instead, it is 

more likely that within the academic community HFT is more likely an academic topic 

covered by classroom review rather than an experiential tool that is used in the actual practice 

of fund management (for example see the class syllabus from Steven’s Institute, NJ
1
).  

Why is this so? There are at least two important deterrents that stall the adoption of an 

operational HFT platform in academia. One is the general unavailability of a cost-effective 

commercial platform that can be widely adopted across both private and public institutions. 

The other is an ideological concern. The uncertainty introduced by regulators who question 

                                                           
1
 http://www.stevens.edu/business/sites/business/files/QF%20427_428%5b1%5d.pdf 

http://www.stevens.edu/business/sites/business/files/QF%20427_428%5b1%5d.pdf
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the predatory nature of HFT raises concerns about regulatory intervention in a system that has 

a transitory management team. Globally, and for a myriad of different reasons, sovereign 

regulators continue to discuss “Clamping Down on Rapid Trades in the Stock Market” 

(2011). But, within the academic community it is truly fair to say that when one door closes, 

another opens. That is, it is only logical that Academia would investigate the impact of 

slowing HF automated trades from milliseconds to, say, minutes. In a timescale measured by 

minutes instead of milliseconds, automated and algorithmic trading would be ‘near’ high-

frequency. To the point, near high frequency trading (NHFT) is an algorithmic method that 

relies on the use of near-continuous market data and corresponding news and, unlike an 

efficient HFT system, the NHFT approach does not require co-located computer servers with 

low-latency digital data flow.  

Absent low-latency millisecond order flow data, the algorithmic models that drive a 

NHFT system are obligated to consider commodity price formation characteristics such as 

long memory, non-stationary, regime shifts and other time-series effects. But, to Academia 

these statistical characteristics set the stage to redefine the study of NHFT as a pedagogy that 

intersects nonlinear financial data mapping and the theory of chaotic prediction. Academic 

inquiry has already produced an extant literature that crosses interdisciplinary boundaries; 

boundaries that include the disciplines of computational finance, behavioral finance, artificial 

intelligence and high frequency prediction (for example, see Andersen, et. al (2008) for a 

comprehensive review and Al-Khouri and Ghazawi (2008) for assessment of volatility and 

liquidity impacts in emerging markets). For convenience, we group the latter three disciplines 

under the heading of computational neuroscience. 

For decades computational finance and computational neuroscience have undoubtedly 

been active research areas. The last decade has witnessed an especially transformative change 

in both fields as for at least two reasons. First, and foremost, there is (computer) hardware 

advancement. The ability to store and process large amounts of tick-level order flow financial 

data locally and in ‘cloud-ready’ environments make it possible to invoke new machine-

learning methods to train state-of-the-art learning algorithms. The second major contribution 

has come in the form of software applications that dynamically align with recent advances in 

both economic theory and newly configured computational hardware.  

The interdisciplinary scope of the investigation proposed by this research leads to twin 

objectives. The initial objective is to develop an automated neuroeconomics based NHFT 

system. Known from this point forward as The Web Intraday Neuro-Knowledge Automated 

Trader System (WINKS), the NHFT is designed to engage multiple radial basis function 
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artificial neural networks (RANNs) to predict next period price for two types of financial 

instruments: a futures contract and domestically traded equity instruments. A practical 

application of WINKS is accomplished by examination of simulated performance for two 

generically defined SMIFs. Additionally, to overcome the domestic investment bias of U.S. 

domiciled SMIFs (Jennings and Jennings (2006)), WINKS is also applied to an investment 

portfolio comprised of traded instruments from BRIC countries.  

The second objective is to uncover the production (quasi-) elasticity metrics that explain 

the allocative efficiency of trading of equity instruments profitably under WINKS 

management. This objective requires using the selected RANN as a nonlinear regression to 

map the neuro responses of technical and fundamental capital market variables onto the 

profitability production frontier. 

The paper is organized as follows. The next section introduces the stochastic integral to 

establish the conditions of capital market price formation and portfolio trading strategies in a 

near continuous market. Section three defines WINKS and introduces the role of the RANN. 

Section four describes the risk-adjusted performance of SMIFs managed by WINKS. Section 

five presents the estimation of production-theoretic elastic metrics to explain profitable trades 

under WINKS. The research ends with a summary and conclusions in section 6. 

2 THE STOCHASTIC INTEGRAL: RELATIONSHIP TO EQUITY TRADING  

Stochastic calculus has rapidly become the language of financial modeling (Brock (1992)). 

To illuminate the descriptive behavior of NHFT in the absence of arbitrage opportunities we 

rely upon the contribution of the stochastic integral as characterized by Shreve (2004) with 

additional definition from (Ait-Sahalia and Jacod (2014)). In the one dimensional case 

consider Xt to be the random variable of a stock’s market price at time t. As in prior research, 

we assume that the price process X follows a geometric Brownian motion with a constant 

drift and volatility (see Tsay (2005) for discussion). Next, we define a predictable trading 

strategy, θ, which determines the quantity θt (ω) of the security to hold in each state ω є Ω 

and at each time t. As stated earlier, the trading system envisioned by this approach assumes a 

market that is not characterized by the no-risk unlimited profit arbitrage effects of trading on 

advanced knowledge (Ederington (1979)). That is, θ is adapted and corresponds to the 

necessary restriction that the trading strategy can only make use of the available information 

at any time t. This prevents the possibility of unlimited gains through either high frequency 

trading or flash-crash trading. Further, the condition that θ is adapted implies that the 

stochastic integral will not diverge when calculated as a limit of Riemann sums. Hence, given 
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a price process X and a trading strategy θ that satisfies the no arbitrage conditions, the total 

financial gain defined by the integral ∫  𝜃𝑢𝑑𝑋𝑢
𝑠

𝑟
 between any times r, s ≥ 0 is explained by 

Ito’s stochastic integral. Since this is a continuous-time stochastic process, it is assumed that 

there is an underlying filtered probability space (Ω, V, (Vt)t≥0,Р). The increasing sequence of 

σ-algebra of V,{𝑉𝑡: 𝑡 ∈ [0, ∞]} determines the relevant timing of information. That is, Vt 

represents the information available up until time t, and is loosely viewed as the set of events 

whose outcomes are certain to be revealed to investors as true or false no later than at time t. 

Lastly, the trading strategy θ is adapted if θt (ω) is Vt measurable. Under the assumption of 

Brownian motion, the simple stochastic integral is extensible to a larger class of integrands as 

long as the integrand is predictable. We observe the predictable and locally bounded process 

θ with the following properties: a) |𝜃(𝜔)| ≤ 𝑛 for all 0 < 𝑡 ≤ 𝑇𝑛(𝜔) and b) 𝑇𝑛 is a sequence 

of stopping times increasing to ∞. 

2.1 Buy and Hold 

The buy-and-hold (BH) strategy is a fixed term trading diversification strategy captured by θ. 

Under the BH strategy an investor transaction times, 𝑡𝑖, are fixed. Immediately after reaching 

stopping time 𝑡𝑖 the BH portfolio is subject to rebalancing before reaching stopping time 

𝑇𝑖+1. The BH strategy closes with portfolio dissolution at some later stopping time U. For a 

position size θt (ω) that is Vt measurable, the trading strategy θ is defined as 𝜃𝑡 =

1(𝑡<𝑡+1≤𝑈)𝜃𝑡(𝜔) . By definition, the gain from the BH trade strategy is caused by the position 

size and the interim price change, or ∫ 𝜃𝑡𝑑𝑋𝑡 =  𝜃𝑡(𝑋𝑈 − 𝑋𝑇)
𝑈

0
.  

2.2 The N-Dimensional Trading Strategy 

A typical financial model allows for n different securities, with price process X1, …, Xn . The 

investor can choose an associated N-dimensional trading strategy θ = (θ 1, …, θ n) for which 

the total gain from the equity trading process is: ∫ 𝜃𝑡𝑑𝑋𝑡  ≡  ∑ ∫ 𝜃𝑖𝑡
𝑛
𝑖=1 𝑑𝑋𝑖𝑡. The technical 

restrictions that define the stochastic integrals can be augmented for the allowable set θ to 

include budget limits, credit constraints, short-sales restrictions or various other managerially 

imposed investment constraints. 

3 AUTOMATED TRADING UNDER WINKS 

The stochastic integral offers two immediate advantages when describing the price formation 

process in relation to the use of HFT (and, NHFT) methods. First, the theory can be applied 

systematically across all traded market instruments and; secondly, the theory is scalable 



Dash \ Kajiji: NHF  Production Economics for Global Wealth Creation… Page -6- 

across various timescale representations. Facing the aforementioned price formation process, 

WINKS operation is configured to efficiently consider the following trading attributes: a) 

real-time data verification; b) machine driven order flow, c) real-time monitoring of 

positions; and d) regulatory compliance. Upon the receipt of financial data and related market 

information, WINKS applies its algorithmic trading logic. It is at this stage where a major 

component of operational risk surfaces – algorithmic, or model risk. 

Model non-performance is traceable to at least two operating characteristics. One is 

model topology risk. A second is model parametrization risk. To mitigate performance 

failures from these sources of operational risk, WINKS engages an enhanced optimizing 

RANN. The prediction and mapping performance of artificial neural networks (ANNs) 

applied to stock market prediction and forecast behavior is well chronicled in the literature 

(see, for example, Refenes (1996), Kajiji (2001), Dash, et. al. (2002), and Tsay (2005)). 

Academic studies have also examined how well automated trading systems perform when 

such systems combine computational commonality from decision theory, the cognitive 

sciences, artificial intelligence and operations research (see, Zimmerman (1991) for a 

discussion and review). To achieve prediction of a derivative’s price for hedge evaluation and 

profitable trading for equities, WINKS introduces a RANN topology that optimizes the 

parameterization step. Not to lose focus, the output from WINKS is not just statistical. 

Simply stated, the output is a traditional trade signal (buy, sell, or hold) with quantity 

attached for both the derivative hedging contract and all managed equity securities. 

3.1 Advances in Neuroeconomics and the Predictability of Market Price 

Mapping the period-to-period return of price changes is a nonlinear modeling problem. The 

apparent chaotic signals in a returns time series results from a deterministic system showing 

aperiodic, long-term behavior with sensitive dependence on initial conditions (Gomez-Gil, et. 

al., (2011)). Advances in machine learning algorithms from operations research coupled with 

an overall increase in computational power have produced a body of findings to show that 

learning algorithms are more and more capable of tackling these highly nonlinear and 

complex problems (Casdagli (1989)). The topologies that define learning networks are quite 

diverse; however, in this study we limit our focus to the RANN which first emerged in the 

neural network literature in the late 1980’s. 

 A primary source of complexity in stock market forecasting is found within the complex 

interactions among market-influencing factors, random process like unexpected news and the 

well establish risk and return relationship of the underlying instrument. Compared to 
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parametric forecasting methods, ANNs do not make any assumptions about the distribution 

of the underlying data. For this reason, ANN applications have been widely used in a variety 

of financial market studies (see, for example, Ludwig, et.al. (2005) and Kansas (2003)). 

Table one provides an alignment of neural network jargon and statistical jargon as a way to 

highlight the kindred relationship among generalized linear models, maximum redundancy 

analysis, projection pursuit, and cluster analysis (Sarle (1994)). 

Table 1: Terminology 

Parametric Statistics Nonparametric ANNs 

Estimation Learning 

Regression Supervised Learning 

Parameters Weights 

Independent variables Inputs 

Dependent variable(s) Output(s) 

 

In the section 3.1.1 we provide a theoretical underpinning for the two intended uses of 

the RANN topology in this paper. The first use is as an econometric mapping and forecast 

tool. The second use takes advantage of the RANN’s ability to perform a nonlinear regression 

with output in the form of linear-additive weights. We begin by examining the specifics of 

how an optimized learning RANN is used to generate a next period forecast of stock return 

(price). This is followed by a discussion on why it is important to transform input data to 

better facilitate optimize learning to take place. The section continues with a review covering 

the importance of network parameterization. Section 3 closes with a pseudo algorithm that 

describes WINKS as a behavioral stock trading platform. 

3.1.1 RANN Learning in WINKS 

Provided with an information set, 𝜃𝑡, WINKS is a trading system that is designed to predict 

the price of a traded instrument at time period t+1. The information contains exogenous and 

possibly noisy prices over q historical periods (t, t-1, t-2,…, T-q). To accomplish its appointed 

task in addition to 𝜃𝑡 WINKS formulates various fundamental and technical rules to control 

for unique, but observed, volatility risk not captured in 𝜃𝑡. Like any automated system, there 

are safeguards in place. Two such examples are: a) WINKS restricts short sales of low-priced 

stocks (i.e., <= $1.00/share) and b) stocks with zero or very low returns volatility (not RANN 

suitable) are trade prohibited. Equation (1) states the presumptive predictive behavioral 

model used by WINKS, 

 𝑦𝑡+1 = 𝑓𝜃(𝑦𝑡 , 𝑥1,𝑡, 𝑥2,𝑡, … , 𝑥𝑘,𝑡 | θ𝑡) (1) 
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where yt is the price/return of the target security at time t and xi,t ,…, xk,t captures the set of k 

exogenous predictor variables at time t. The actual learning model(s) utilize an enhanced 

multiple objective univariate RANN.  

The enhanced RANN is a Bayesian enhanced RANN with a closed form derivation of 

the RANN regularization parameter (see the pioneering work of Kajiji (2001)). Equation (2) 

states the foundations of the network design that achieves both mapping- and computational-

efficiency, 

 {[𝑥(𝑘), 𝑦(𝑖) ∶ [ℝn, ℝ]}k=1
m  , (2) 

where x(k) is the input vector for predictor k, y(i) is the output vector for stock i, and n is the 

dimension of the input space, and m is the number of basis functions and by assumption, the 

data is drawn from the noisy set:  

 {[𝑦𝑖 = 𝑓[𝑥(𝑘) + є]}k=1
m  . (3) 

Figure 1 depicts a typical RANN topology across its three layers: the input layer (which 

is process free), the layer of weights (middle or hidden layer), and the output layer. In the 

broadest terms, the input layer is described by the predictor variables that are used to form a 

prediction of the output variable in time period t+1. In this paper the output unit is the actual 

period return forecast for the traded instrument. 

Figure 1: The RANN Topology 

 

The middle (or hidden) layer embraces computing units (nodes). Each hidden node is 

defined by a center. The center, c(k), is a parameter vector of the same dimension as the input 

data vector, x(k), and calculates the Euclidean distance between the center and the network 

input vector x(k) defined by ‖𝑥(𝑘) −  𝑐(𝑘)‖. As is evidenced by figure 1 all inputs play a role 

in determining the best weights to generate the output required. This is the “learning” portion 

of the network. The results are passed through a nonlinear activation function, ∅(𝑘), to 

produce output from the hidden nodes. The primary method of activation used in this 

research uses the widely known Gaussian transfer function which is described as 
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 ∅(𝑘) =  exp (
‖x(k)− c(k)‖2

σj
2 ) , j = 1 . . . 𝑚 , (4) 

where σj is a positive scalar and is referred to as the width of the center. The output layer is a 

linear combiner with the ith output of the network model being a weighted sum of the hidden 

nodes: 

 ŷi =  ∑ ∅(k)m
j=1 wj, i = 1 . . . 𝑝 (5) 

where p is the number of outputs (in the univariate case p = 1), w represents the linear and 

additive output layer weights, and 𝑦̂ is the network output estimate of the target y (for 

additional discussion see Haykin (1994), Broomhead and Lowe (1988), Lohinger (1993), 

Parthasarathy and Narendra (1991) and Sanner and Slotine (1992)). A common problem 

faced by the traditional implementation of RANN topology is its propensity to learn slowly 

and, when confounded by a large bias, to produce non-optimal weights. To address this issue 

the Tikhonov regularization parameter (𝑣) (lambda or weight penalty) is often added to the 

cost function as shown in equation 6.  

 C =  ∑ (𝑦̂𝑖 − 𝑓(𝑥𝑖))2 +  ∑ 𝑣𝑗𝑤𝑗
2m

j=1
p
i=1 . (6) 

Here vj expresses the regularization, or weight decay, parameters. Under this specification the 

function to be minimized is restated as: 

 𝐶 =  
𝑎𝑟𝑔𝑚𝑖𝑛

𝑣
(𝜁 ∑ (𝑦 − 𝑓(𝑥𝑖|𝑣̅))2 +  ∑ 𝑣𝑗𝑤𝑗

2𝑚
𝑗=1

𝑘
𝑖=1 ) (7) 

 Early implementations of the RANN topology relied exclusively on iterative 

techniques to compute the weight decay vector 𝑣. With the computational advances in 

parametric weight decay methods by Hoerl and Kennard (1970) and Hemmerle (1975) non-

specific and computationally burdensome iterative techniques faded in popularity [see, Orr 

(1996, 1997)]. Kajiji (2001) added two significant extensions to the traditional RANN. First, 

she developed a closed-form solution to estimate specifically the regularization parameter. 

Second, based on Crouse’s (1995, 2012) Bayesian enhancement to ridge regression she 

invoked A priori information to further reduce network learning error (SSE). This optimizing 

dual objective version of RANN is well known as the K4-RANN. Stated differently, the K4-

RANN is a dual-objective, multiple criteria decision analytic (MCDA) algorithm that directly 

attacks the twin evils that befuddle traditional ANN modeling: (a) the “curse of 

dimensionality” (multicollinearity or over-parameterization) and (b) an inflated residual sum 

of squares (inefficient weight decay). Owing to these extensions, the K4-RANN is 

particularly well-suited for the stated objectives of the algorithmically driven WINKS. 
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3.1.2 RANN Data Transformation Alternatives 

In general, RANNs are invoked after the input data set has been statistically transformed. The 

process of data transformation modifies the distribution of the variables to match the inputs 

(Shi (2000)). The K4-RANN method supports the following transformation methods: 

standardization (zero mean and unit variance); normalization over the range [0,1], (Norm-1); 

and, normalization over the range [-1,1], (Norm-2). Both Norm-1 and Norm-2 fall in the class 

of min-max normalizations (Jiawei, Kamber et al. (2012) provide a more detailed and 

generalized discussion). 

3.1.3 RANN Parameterization 

The process of parameterization involves choosing: a) a transfer (radial) function and b) a 

rule for minimizing the error signal in mapping the target variable. The selection of a radial 

function is what makes the RBF method unique when compared to alternative learning 

methods such as back-propagation, self-organizing maps, and general purpose feed-forward 

networks. Radial functions decrease (increase) monotonically from a central point. In 

addition to a Gaussian transfer function (equation 4) the K4-RANN technique supports four 

other well-known transfer functions (e.g., Cauchy, Softmax, multiquadric (MQ), and inverse 

MQ, or, MQ
-1

. Network information flow does not occur without some error. The K4-RANN 

algorithm supports several error minimization rules of which the GVC (generalized cross-

validation method) tends to be the primary choice when the transfer function is Gaussian. 

Alternative choices include: UEV (unbiased estimate of variance); FPE (final prediction 

error); and, BIC (Bayesian information criterion). 

3.2 WINKS Trading: A Pseudo-Algorithm for K4-RANN Mapping 

A pseudo algorithm description of WINKS, version 1.1.4 is presented in figure 2 below. This 

version of the WINKS automated trader was executed on a Microsoft Windows 2008 server 

with dual quad-core AMD CPUs with 32 gigabytes of RAM, and a two (2) two-terabyte hard 

drives. Besides normal maintenance, the combined hardware and software system is designed 

to operate 24/7 with minimal user-intervention. In the next section we present the results of 

applying WINKS to three alternative portfolios. Two portfolios represent generalized SMIFs. 

The third portfolio introduces international investment vehicles from BRIC countries. 
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Figure 2: WINKS Pseudo-Code 

 
Note: WINKS follows the SIFMA trade calendar 

4 SMIF PERFOMANCE UNDER WINKS  

By and large, the student managed investment fund (SMIF) is a vehicle created by academic 

institutions – namely colleges and schools of business – to provide real-world portfolio 

management and security analysis experience to enrolled students. A recent survey by Peng, 

et. al. (2009) solidifies the opinion that the typical SMIF, whether supported by a stand-alone 

trading room or not, serves as a vehicle by which the host institution can gain significant 

external visibility – an outcome that can enhance student recruitment and fundraising 

activities. SMIFs are generally associated with an academic course of study that teaches value 

investing and passive investment management. A review of excerpts from web pages hosted 

by various SMIFs overwhelmingly supports this view:  

 “The SMIF actively manages an all-cap value portfolio with approximately $351,000 in 

assets under management.” 

 “The Student Managed Portfolio invests in large-cap domestic securities within the S&P 

500 and Russell Value 1000 Indices...using “bottom-up” fundamental analysis... We look 

primarily at stocks with relatively low Price/Earnings and Price/Book ratios, strong 

dividend yield, superior relationship of total return to Price/Earnings paid, solid financial 

statements, and strong long term growth prospects among other factors.” 

1. Initial setup: establish a database of securities based upon all managed portfolios. 

2. Daily at 11 p.m. begin/update algorithmic procedures:  

a. Update the historical open, high, low, close, and volume data for every security in the 

WINKS database from Yahoo! Finance with the current day-end information.  

b. Compute the security’s descriptive statistics – expected return, standard deviation of 

returns, skewness, and kurtosis and update the historical data base. 

c. Compute the Trade Intensity (TI) index and compare against: 

i.  Equity candle sticks, volume, and 

ii.  The current EOD predicted value for all securities. 

3. Compute the 3day, and 5day trend for every security 

4. Compute the Darvas upper/lower hinges for every security. 

5. Every 20 minute from 9:40 a.m. to 11a.m. 

a. Obtain next actual trade price  

b. Compute log-returns for 100, 20-minute data points. 

i. Update the K4-RANN EOD forecast  

ii. Update the K4-RANN 20-minute ahead price forecast  

c. Trade – integrate TI and Darvas hinge to execute NHF trade: Short, Long, Hold, or 

Close Open position. 

i. Short open only if current trade price > $1.00 

ii. Close any open position for which the actual rate-of-return ≥ -2.00% 

6. From 11:20 a.m. and for every 20 minute time interval until market close (4.00 p.m.) 

a. Obtain next actual trade price  

b. Compute log-returns for 100, 20-minute data points 

i. Update the K4-RANN EOD forecast  

ii. Update the K4-RANN 20-minute ahead price forecast  

c. Trade – execute a restricted Hold or Close NHF trade 

7. At 11:00 pm, go to Step 2 and repeat  
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 The SMIF seeks to “…earn a rate of return, calculated on the entirety of the fund, that is 

superior to the market benchmark, defined as the S&P Index, in each one-year, three-

year, and five-year period”…and…”to manage the fund in the context of portfolio 

management rather than a collection of individual stocks.” 

 “The long-term goal of the Student Managed Investment Fund is to manage a balanced 

fund that provides the income and capital gains… Our primary strategy for investment 

decisions is to find undervalued securities and hold those securities until their value is 

fully realized by the market… risk management is critical and should be measured and 

controlled through proper monitoring of active exposures relative to the stated 

benchmark.” 

This paper does not seek to provide a survey of SMIFs and their unique investment 

objectives. Instead, we generalize the behavior of the SMIF universe by selecting two internet 

hosted SMIF portfolios (c. December, 2014 - January, 2015). For comparative purposes we 

label these funds SMIF-01 and SMIF-02, respectively. We also observe a portfolio size of 

approximately 10 to 25 securities for the SMIF offered on a traditional semester (or quarter) 

basis. Each of the sample SMIFs selected for this research fall into this range. Post Internet 

review, it is also evident that any portfolio diversification decisions are likely to be made on a 

security-by-security basis rather than by a principle of optimal diversification. This section 

continues with an identification of inputs, expected outputs and fundamental factors needed 

to fully engage WINKS to manage a generalized SMIF as well as a BRIC alternative 

portfolio. 

4.1 Inputs for Neuroeconomic modelling 

The neuroeconomic approach to econometric modeling is ideally suited to learn how the 

complex latent relationships among explanatory variables explain the behavior of the target 

(dependent) variable.  

4.1.1 Equity-Based K4-RANN Modelling 

To predict equity prices (returns), WINKS relies upon the one-period lagged interaction 

among the five factors and the target variable. Two factors are ETF portfolios: ticker VXX 

(the S&P 500 VIX short-term futures ETN) and ticker PLW (a 1-30 year maturity laddered 

treasury ETF). In addition to the two ETN/ETF factors, the equity-based K4-RANN 

incorporates three supporting firm size factors that account for small-, medium- and large-cap 

stocks. The ETF tickers for these factors are: IWM, MDY and SPY, respectively. 

4.1.2 Futures-based K4-RANN Modelling 

Prediction of the near-term E-mini S&P futures contract (ticker ES) is produced by relating 

the futures index value (or, its return) to the one-period lagged value (return) of two input 
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factors. These factors are the VXX (as previously defined) and the other is the Trend 

Intensity Index (TRI, of the Thomson Reuters Corporation). TRI is a technical indicator that 

captures the strength of a trend in stock price behavior using enhancements to the relative 

strength index (RSI) and Average Directional Index (ADX) indicator (for more information, 

see: http://www.marketvolume.com/technicalanalysis/trendintensityindex.asp). 

4.2 K4-RANN Modelling of Traded Period-to-Period Chaotic Returns 

The design objective for WINKS is to create a multivariate N-dimensional K4-RANN to map 

financial returns data to support a NHFT decision system. Before initiating network training 

WINKS invokes equation (8) to compute market returns through the i-th variable, 

 𝑟𝑖,𝑡 = 1 + (𝑙𝑛𝑃𝑡 − 𝑙𝑛𝑃𝑡−1) . (8) 

Subsequently, returns data is transformed to standardized variables with a zero mean and unit 

variance. Additional system modelling characteristics and assumptions include: a) the trade 

transaction fee is set at $0.004 to follow the Interactive Brokers (IB) bundled fee structure for 

U.S. based trades
2
; b) the K4-RANN, WINKS can exactly predict the EOD price of the ES 

near-term futures contract; c) in addition to an exact quantity, the WINKS predicted trade 

indicator signals a defined market decision to buy / sell / hold; d) the K4-RANN prediction is 

valid for a discrete and fixed holding period of 20-minutes; and, e) an individual trader’s 

actions do not influence the market or create adverse price movement. 

In section 4.2.1 we provide a detailed description of the K4-RANN stock price prediction 

system. Section 4.2.2 mirrors section 4.2.1 but for the near-term S&P 500 futures contract 

(ticker ES). The ES contract forms the basis upon which a standard short-hedge is 

implemented. 

4.2.1 The WINKS Equity Stock Price Prediction System 

Inside WINKS the K4-RANN econometric forecasting model is executed continuously and 

simultaneously over the course of the exchange trading day. The notation used to describe the 

NHFT model is as follows. The time unit is stated in minutes per day based on a 20-minute 

timescale between trade evaluations. Next period (t+1) price predictions are obtained from 

solving the K4-RANN econometric model on a security-by-security basis. At time (t+1) 

equations 9 and 10 work together to produce both a return and price prediction for the i-th 

security. Network training utilized the most recent 100 log-return observations across all 

variables up to market close. For all securities, the specified K4-RANN econometric 

                                                           
2 IB has changed its fee structure to $0.05 bps of trade value instead of the $0.004 per trade as reported in this research 

http://www.interactivebrokers.com/.  

http://www.marketvolume.com/technicalanalysis/trendintensityindex.asp
http://www.interactivebrokers.com/
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parameter settings employ a Gaussian transfer function with a radius of 1.0 using a GCV 

error minimization rule.  

(𝑟𝑖,𝑡) =  β1(r𝑉𝑋𝑋,t−1) +  β2(r𝑃𝐿𝑊,t−1) +  β3(r𝐼𝑊𝑁,t−1) +  

β4(r𝑀𝐷𝑌,t−1) +  β5(r𝑆𝑃𝑌,t−1) +  εt      (9) 

Pi,t+1 = (Pi,t) + (1 + e(𝑟𝑖,𝑡))   (10) 

4.2.2 The WINKS Futures Contract Prediction System 

Rebalancing an investment portfolio to replicate index performance can lead to increased 

trading costs and an inability to forestall wealth depreciation (Cai and Houge, 2007). As an 

alternative to portfolio rebalancing investors can turn to index hedging as a way to 

incorporate market index wealth performance targets. The index hedging approach to risk 

mitigation requires the analyst to predict the future price of the target index (or, its futures 

contract derivative). In this study, to produce a new EOD futures (F) index prediction, the 

K4-RANN is applied to equation (11). Equation (12) converts the return prediction to an 

index value. In this system, K4-RANN parameterization uses a Gaussian transfer function 

with a radius of 1.0 along with a GVC error minimization rule. Data transformation is 

performed by creating standardized variables with zero mean and unit variance. 

(𝑟𝐹,𝑡) = 𝛽1 (𝑟𝑉𝑋𝑋,𝑡−1) + 𝛽2 (𝑟𝑇𝑅𝐼,𝑡−1) + 𝜀𝑡   (11) 

𝐹𝑡+1 = (𝐹𝑡) + (1 + 𝑒(𝑟𝐹,𝑡))   (12) 

4.2.3 The WINKS Stock Index Hedging System 

The objective of hedging underlying portfolios with the ES is to offset the expected 

systematic loss of wealth due to a bearish-price prediction for the market index. Because the 

minimum effective time of any open hedge is one trading day, this study defaults to the non-

stochastic minimum variance hedge ratio (MVHR) of Johnson (1960) and Ederington (1979). 

For this hedge ratio when the measured relationship is such that 𝑓𝑡+1 ≤  𝑓𝑡, the MVHR is 

obtained and an optimal hedge position is opened by 

    𝑁𝑓 = −𝛽𝑃 (
𝑆𝑃

𝑓𝑡
), 

where 𝑆𝑃 is the current market value of the portfolio (p), 𝑓𝑡 is the current price of the ES near-

term futures contract and 𝛽𝑃 is the market beta of the portfolio. Conversely, whenever an 

opened hedge position is subject to an expected reversal in the price of ES such that 𝑓𝑡+1 >

 𝑓𝑡, the hedged position is closed by offset. It is important to note that the forecasted value of 
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the derivative contract is what triggers the decision to hedge; however, actual MVHR values 

are based on actual market prices. 

4.3 The Hedged Performance of SMIFs under WINKS 

The comparative NHFT experiment examines three portfolios – two are representative of 

typical SMIFs and the other is a portfolio that is comprised of BRIC country ETFs. All 

investable components trade across two U.S. security exchanges – the NYSE and NASDAQ 

exchanges. Both exchanges trade continuously during the regular market hours from 9:30 

a.m. EST to 4:00 p.m. Pre-market and after-market trades are not considered. The trading 

experiment was run from 02-January-2015 through July 31-2015. All instrument trades over 

the simulation period were under the sole control of the WINKS algorithmic procedures. 

Portfolio simulations were initiated with a dollar trade amount of US$2,500 per equity 

instrument. Hence, the initial traded shares for any equity are calculated by a divisor equal to 

the trade price. Upon the generation of subsequent trade signals the number of shares traded 

is determined by dividing the current balance available for instrument trade (i.e., $2,500 

adjusted for prior trade profitability). 

For each of the three investment portfolios and their constituent securities the following 

alternative investment strategies were simulated. First, there is the traditional buy-and-hold 

strategy (also referred to as the unmanaged portfolio, U). Second, is the risk-mitigated and 

hedged portfolio (M). Portfolio M is portfolio U modified by the dynamic application of the 

MVHR where the decision to hedge is obtained from K4-RANN EOD predicted futures 

price. Lastly, there is portfolio T; the investment plan managed solely by the WINKS system. 

In this study we evaluate portfolio performance comparatively based on the following 

metrics: annualized return; the Sharpe ratio; the Modigliani and Miller risk-adjusted-return 

performance measure (M
2
); and, VaR (value-at-risk). 

4.3.1 Comparative Portfolio Holdings 

Table 2 presents a comparative view of the tickers held across SMIF-01 and SMIF-02 

(source: Yahoo Financial). For clarity we note that only ticker SHLD (Sears Holdings Corp) 

appears on both lists. We also note that reported market capitalization values are time 

dependent real-time quotes. Published Yahoo Financial definitions differentiate a large cap 

fund from a mid-cap fund based on the market values of the companies held in the portfolio. 

Large-cap designation requires a firm to have a market value greater than $8 billion while a 

mid-cap company is one whose market capitalization is in the $1 billion to $8 billion range. 
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The average market capitalization of the firms in portfolios SMIF-01 and SMIF-02 is $5.32B 

and $17.73B, respectively. By prior definition, SMIF-01 is a small cap fund and SMIF-02 is a 

mid- and large-cap fund. The BRIC fund is comprised of 40 small- and mid-cap funds and 3 

ETFs (a listing is provided in appendix A).  

Table 2: The SMIF Approved Investment List 

SMIF-01 SMIF-02 

 Beta 
Market  

Cap (B$) 
 Beta 

Market 

Cap (B$) 

CLB 2.04 $4.70 AMWD 1.18 $1.06 

CPK 1.02 $0.78 AWH 0.75 $3.92 

DSX 1.18 $0.59 BIG 1.29 $2.23 

GALT 1.20 $0.05 DE 0.68 $31.50 

HUM 1.25 $28.09 EBAY 0.88 $34.43 

IJJ 1.07 n/a GGG 1.83 $4.16 

IJS 1.12 n/a GLW 1.61 $22.02 

PEZ 0.94 n/a LH 0.40 $12.48 

PLPC 1.00 $0.18 MCO 1.42 $22.20 

PWR 1.09 $4.97 MO 1.01 $109.40 

SFG 1.17 $4.81 SHLD 3.13 $2.68 

SHLD 3.13 $2.71 SODA 0.50 $0.34 

STZ 0.86 n/a TEL 0.99 $25.16 

SWX 0.90 $2.65 TEN 1.20 $3.08 

TOWN 0.82 $0.96 TISI 0.39 $0.93 

UAL 0.58 $22.61 VRSN 1.60 $8.07 

WPP 0.77 $0.44 VTI 1.01 n/a 

XRAY 1.21 $7.94    

Average  $5.32 Average  $17.73 

 

The next section reviews the trading characteristics generated by WINKS control of the 

three sample portfolios. This section provides a clear view of the NHF engine and its implied 

efficiency. 

4.3.2 WINKS NHF Trading Results 

Table 3 presents comparative analytics of WINKS trading across the three investigatory 

portfolios. As previously identified the two SMIFs differ by capitalization emphasis. At the 

start of the WINKS simulation period each stock was initialized with an investment rounded 

to approximately US$2,500 based on trade price of that day. Allowing for whole share trades 

the beginning value of each SMIF is between $42,000 and $45,000. Performance metrics for 
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the simulation period are presented in table 3. The presentation includes the number of 

automated trades executed by WINKS over the period. 

Table 3: Characteristic WINKS Performance 

Trade Descriptor SMIF-01 SMIF-02 BRIC 

Capitalization Small Cap Large Cap International 

Number of Instruments 18 17 43 

Beginning Value ($) 44,351 42,015 $107,106 

Buy Hold Profit / Loss ($) $258 $905  ($18,081) 

Buy Hold Profit / Loss %  0.58% 2.15% (16.88%) 

Net Trading Profit / Loss ($) $5,664 $2,154 ($7,791) 

Net Trading Profit / Loss (%) 12.77% 5.13% (7.27%) 

Number of Trades 1,563 1,477 2,968 

 

The role of the “(firm) size” premium in the production of investment returns is often 

challenged for a number of reasons. Recent evidence from Asness, et. al. (2015) finds the 

“size” premium’s interaction with “value” and “momentum” factors is significant and stable 

when a portfolio’s constituent investments control for quality versus junk. By extension, we 

can assume that the study SMIFs have, through the due diligence of value analysis, controlled 

for quality in the selection of portfolio investment vehicles. Hence, it is not surprising to find 

that the auto-traded small cap portfolio outperforms the similarly managed large-cap 

portfolio. Lastly, the results show that the BRIC fund did not perform profitably under 

WINKS control. This is directly attributable to model risk. Specifically, the domestic-

oriented K4-RANN econometric equation (eq. 11) is not capable of learning the volatility 

pattern of the BRIC international securities. 

4.3.3 Comparative Mean-Variance Efficient Sets 

The mean-variance (MV) efficient frontier sets provide additional insights on the relative 

performance of the three portfolios. Figure 3 presents the three efficient sets – one for each of 

the sample portfolios. 

The efficient set for small-cap SMIF-01 exhibits breadth and it clearly dominates the 

efficient sets associated with the other two funds. A closer examination reveals that among 

the three, the SMIF-01 efficient set has the highest potential return (maximum rate of return 

portfolio) and it also has a minimum variance portfolio (MVP) that, while matching the 

expected return of the large-cap SMIF-02, dominates in the risk plane. The efficient set for 

the BRIC portfolio is dominated at all expected return levels by efficient sets produced for 

the two SMIFs. 
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Figure 3: MV Efficient Frontiers for Sample Portfolios 

 

4.3.4 Futures Contract: Predictive Performance 

Figure 4a displays the results of fitting equation 11, the one-period ahead returns prediction 

for ticker ES. Over the simulation period 01-Jan-2015 to 31-Jul-2015 there were 152 

prediction points. The importance of risk-mitigation hedging requires an emphasis on correct 

forecast direction. We find that 55.63% of the predictions for EOD ES price evidenced a 

correct directional prediction. The forecast MAPE is 11.69%; a value which implies that, on 

average, the absolute dollar-level of the prediction has an error of just under 12%. 

Figure 4: Returns and Price Prediction for Futures Index 

a) Actual and Predicted Returns b) Actual and Predicted Price 

  
 

Figure 4b displays the estimated price of ES as derived from equation 12 plotted 

against the actual futures contract price. Knowing that the only 55-percent of the predictions 

are in the right direction leaves open for ongoing discussion what level of model risk actually 

characterizes the futures prediction system.  

4.3.5 Comparative Risk-Adjusted Hedged Performance 

Lawrence (2008) was one of the first to note that SMIFs do not robustly use financial 

derivatives as a risk-mitigation technique. Coincidently, Saunders (2008, 2015) argued that 
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SMIFs should add risk mitigation to portfolio management in the form of covered calls. In 

the automated trading arena where long and short positions are equally available, the 

consequences of adding risk-mitigation to the algorithmically controlled trades can be quite 

substantial. This section examines the effect of applying the predicted MVHR hedge ratio to 

the implicit BH diversification of the three study portfolios.  

For each study portfolio we compare three alternative investment scenarios. Within each 

fund we define the managed portfolio (M) as the start-of-period BH portfolio hedged on a 

daily basis using ES. Portfolio (U) is the unmanaged/unmodified BH diversification plan. 

Lastly, portfolio (T) is the unhedged WINKS managed investment plan. Table 4 provides the 

comparative risk-adjusted performance measures for the M, U, and T portfolios. The table 

also provides the average daily return and the standard deviation of this return. The Sharpe 

(reward-to-variability), ratio is presented for ranking purposes. The Modigliani-Miller 

ranking alternative (M
2
) is provided as a complement. Although M

2
 is derived from the 

Sharpe ratio it has the advantage of being in units of percent return. Although it is not without 

controversy, Value-at-risk (VaR) remains a current standard in firm-wide risk measurement. 

VaR captures the maximum probable loss on an investment over a specific period of time at a 

given confidence level (p=0.05).  

Table 4: Select Performance Measures 

 
SMIF-01 SMIF-02 BRIC 

 
M U T M U T M U T 

Average Daily Return 0.06% -0.02% 0.03% 0.11% 0.02% 0.01% -0.04% -0.08% 0.06% 

Std Dev of Return 1.03% 0.99% 0.60% 1.06% 0.84% 0.30% 1.12% 1.22% 0.88% 

VaR (%) 1.96% 1.96% 1.13% 1.97% 1.62% 0.59% 2.24% 2.48% 1.66% 

VaR ($) $43.49  $38.69  $24.41  $47.30  $34.26  $12.19  $43.08  $44.68  $37.35  

Sharpe 20.11 -9.02 20.49 37.97 10.10 7.80 -13.24 -25.12 26.12 

M2 15.56% -6.87% 15.86% 29.32% 7.86% 6.09% -10.11% -19.26% 20.19% 

 

The futures-based MVHR hedge strategy is set to initiate coincidently with the start of 

the WINKS trading simulation. The performance of the MVHR hedge ratio is dependent on 

the correlated structure of underlying asset returns. We are able to report a statistically 

significant correlation between the returns of both portfolios and the market index. The 

correlation (ρ) and p-value (p) combination for SMIF-01 (small-cap) and SMIF-02 (large-

cap) is ρ=0.282 with a p=0.00026 and ρ=0.729 with a p=0.00001, respectively. Over the 

simulation period, the result of this exercise is expressed in the results of portfolio M. We 

find that the hedged small-cap SMIF-01 recorded markedly different performance versus the 

un-hedged BH counterpart (U). For example, the VaR is identical for fund M and U (1.96%). 
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But hedging activity produces (as it should) a comparatively higher expected daily return 

(0.06% vs -0.02%). The ranked results of these two portfolios corroborate the performance 

observations. The fact that a hedged BH portfolio outperforms the equivalent unhedged fund 

is expected. However, the more interesting inquiry involves a risk-adjusted comparison of the 

hedged fund and the WINKS managed fund. Interestingly, the comparative M
2
 metrics are 

nearly identical for M and T (15.56% vs 15.86%); but, the VaR level is noticeably less (1.96% 

vs 1.13%). This observation immediately suggests that NHFT using the algorithmic features 

of WINKS produces less tail risk while generating greater fund returns (0.06% vs 0.11%).  

The BRIC portfolio is a poor performer under all trading alternatives. All trade 

management alternatives produced negative returns even though the VaR metric across all 

portfolios is more uniform in value. Clearly, BRIC domiciled investment instruments are not 

suitable for WINKS administration. This observation is not surprising given the insignificant 

returns correlation between the BRIC portfolio and the S&P 500 (ρ = -0.007; p-value = 

0.92729). 

Figure 5 provides a chart view of applying an index MVHR to each of the sample 

portfolios over the simulation period. The top most line of the area chart is the value of the 

hedged SMIF (BH with index hedge attached) and the bottom line displays the value of the 

market index. The range of the area between the two lines is a clear indicator of hedge 

profitability. 

Figure 5: Profit from a MVHR Application for Sample Portfolios 

SMIF-01 SMIF-02 BRIC 

   
 

The BRIC results show that while the MVHR is effective, it is not sufficient to cover the poor 

BH performance of the uncorrelated BRIC fund. 

5 BEHAVIORAL FACTORS AND THE PRODUCTION OF WEALTH 

Factor models are routinely invoked to better measure efficient returns. Extant reasoning 

begins with the classic Fama and French (1993) three factor model. In addition to the 

common market factor, the Fama-French model introduced additional factors to account for 

size and another for value. Carhart (1997) was one of the first to extended the three-factor 

model by including a momentum effect. Domestic and international versions of the Carhart 
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formulation proposition have been subjected to extensive investigation (for applicability of 

the four-factor model, see Lam, Li and So, (2009)). In the following section we introduce a 

variant of a factor model; it is a variant suitable for the investigation of either security or 

portfolio returns. With a focus on NHFT this research is primarily concerned with the 

profitability evaluation of the individual investment instruments held across the three sample 

portfolios. Specifically, we seek to understand if four fundamental factors can explain the 

target variable “percent profitable trades.”  

5.1  Behavioral Calibration of the Complex Production Functions  

Nonparametric regression relaxes the usual assumption of linearity and thereby enables a 

more robust data exploration that typically uncovers economic structure that might otherwise 

be overlooked. However, under a nonparametric approach to regression it is also well-known 

that modeling performance declines as the number of independent variables increases. The 

problem is one of increasing variance dimensionality or, what was described earlier as “the 

curse of dimensionality.” Fortunately, owing to the theoretical underpinnings of the K4-

RANN, the dimensionality problem is not material to formulation of the production theoretic 

model proposed in this section (see Kajiji and Dash (2012)) on behavioral extensions to 

production economics using the K4-RANN). 

5.1.1 The Target Variable: PPT 

In this section we provide a more complete definition of PPT (equation 14), 

 Percent Positive Trades = 𝑃𝑃𝑇 =  Round (
# positive trades

total # trades
 x 100) . (14) 

The spread of the 77 PPT target variables is depicted graphically in figure 6 as shown below.  

Figure 6: Percent Positive Trades by Security  

 
 

From figure 6 one is able to observe that WINKS produces PPT that lies with the lower/upper 

range of 30- to 80-percent, respectively. Between these two observed bounds the PPT plot 
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shows a remarkable level of symmetry in PPT spread. Still, the empirical research question 

remains – is it possible to explain the production of PPT with fundamental factors? 

5.1.2 The K4-RANN Production-Theoretic Model 

The functional form of the K4-RANN is a multiplicative production-theoretic model with one 

target variable and five factor variables. Continuing with the reasoning provided by Kajiji and 

Dash (2012), the mapping exercise purposes to convert the multiplicative interaction among 

production factors by a logarithm transformation. This mapping relationship of equation 13 

expresses the PPT production function from a cross section of firm-specific fundamental 

production factors: 

 𝑙𝑛 (𝑃𝑃𝑇) = 𝑙𝑛 (𝛼) + ∑ 𝑤𝑖(𝑙𝑛𝐹𝑖
5
𝑖=1 ) (13) 

Here α is the equation constant; F1 is instrument’s beta; F2 is book/price ratio computed from 

annualized book value and the most recently observed trade price; F3 is the security’s current 

market capitalization; and, F4 is the technical indicator percent-change from 50 day the 

moving average; and, F5 is the instrument’s PEG ratio (price-to-earnings ratio divided by the 

growth rate of earnings).  

5.2  The Data 

Preparation for the empirical estimation of the K4-RANN production model is based on a 

averaging of time-series fundamental data for 77 tickers in the current study. On July 31, 

2015 a cross-section of trade and fundamental variables for each investment instrument was 

thus tabulated in preparation for the econometric analysis
3
. We also computed the values for 

the percent profitable trade value for each of the 77 tickers on July 31, 2015. Structural bias 

in the econometric analysis of trading performance was eliminated by excluding all non-

equity stocks. Also excluded were equity stocks that do not have Yahoo! Finance reported 

fundamental data on the estimation date. After all adjustments, the number of tickers for the 

K4-RANNeconometric estimation is reduced to 69 tickers. 

5.3  Behavioral Networks and the Double-Log Production Function 

Achieving an efficient solution to the nonparametric RANN model compels one to join the 

science of RANN optimization and parameterization with the art crafting an intuitive 

decision-model. To this end, this research presents alternative model formulations that 

represent this combined approach. Along the way the alternate models clearly provide 

evidence of the importance attached to data transformation methods and review of alternate 

                                                           
3 Every attempt was made to capture and process the fundamental information for all securities on close of business July 31, 2015  
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model parameterization (see: Dash and Kajiji (2008) for details on the data transformation 

methods). We select a dominant decision-making solution by comparing ‘Fitness Error’ 

across the three models in Table 5.  

Table 5: K4-RANN ANOVA: Alternate Parametrization 

Description Model 1 Model 2 Model 3
*
 

Data Transform STD-1 STD-1 STD-1 

Validation Error 2.23E-02 2.30E-02 1.54E-02 

Fitness Error 1.81E-01 4.42E-02 1.65E-02 

R-Square 94.67% 98.79% 99.87% 

AIC -105.854 -203.196 -270.926 

Schwarz -92.449 -189.792 -257.522 

Error Minimization UEV GCV GCV 

Transfer Function MQ MQ
-1

 Gaussian 
*
Selected model 

 

The error measures reported in this table are traditionally computed mean-squared error 

(MSE) metrics. The MSE measures are divided into two sub-domains. Validation error 

reports the MSE for fitted function on data that is not used to train the network. It is the MSE 

for the out-of-sample data used in the training of the network. Fitness error is the MSE over 

the entire data set. We use the Fitness Error metric for comparative model evaluation. As 

supportive and adjunct evaluation metrics, R-squared, AIC (Akaike information criterion) 

and the Schwarz Bayesian information criterion are well known in the literature.
4
  Based on 

the low validation error metric and the comparatively high negative values for AIC and 

Schwarz, model 3 is the most efficient solution for the stated research objectives.  

5.4 Quasi-Elasticity Policy Implications 

The K4-RANN learning weights are presented in table 6. In the terms of the production-

theoretic decision model these weights serve as quasi-elasticity estimates of the production 

function’s input factors. A policy review of each follows. 

Table 6: Estimated K4-RANN Weights (𝑤i) By Transformation Type 

Estimated Weights Model 1 Model 2 Model 3* 

Constant 0.095 -0.138 -0.026 

Ln(Abs(Yahoo Beta)) 0.087 0.111 0.121 

Ln(Abs(Book / Price Ratio)) 0.043 0.024 0.034 

Ln(Market Capitalization / 10000) -0.262 -0.237 0.011 

Ln(% Change from 50 Day MA) -0.114 0.234 0.021 

Ln(PEG Ratio)  0.169 0.162 0.009 

Returns-to-Scale -0.018 0.156 0.170 
*Selected Model  

                                                           
4 For discussion, examples, and computational issues see: http://en.wikipedia.org/wiki/R-square , 

http://en.wikipedia.org/wiki/AIC_(statistics) , and http://en.wikipedia.org/wiki/Schwarz_criterion 

http://en.wikipedia.org/wiki/R-square
http://en.wikipedia.org/wiki/AIC_(statistics)
http://en.wikipedia.org/wiki/Schwarz_criterion
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For the dominant model 3, the production of PPT is characterized by diminishing returns 

to scale (0.170). This finding implies that, over the long-run, changes to PPT would be less 

than proportional to the simultaneous change in all fundamental factor inputs. Diminishing 

marginal returns infers that it is not possible to increase PPT within WINKS by uniformly 

and continuously increasing all input factors. A closer look at the factor quasi-elasticity 

metrics yields a more intuitive understanding of how WINKS actually works to produce 

profitable trades on a security-by-security basis. 

5.4.1 The Market Risk Factor 

The K4-RANN weight for the beta coefficient is 0.121. For a 1% change in market beta level 

the WINKS trading platform increases PPT by 1.21%. From an operational point of view, 

one could argue that as the WINKS platform expands to include additional high-beta stocks 

the system’s trading profitability will show a positive response. A practical implementation 

plan would be to increase the number of small- to mid-cap stocks in the SMIF.  

5.4.2  The Impact of the Multi-Dimensional Book/Trade Price Factor  

The estimated quasi-elasticity metric for the book/trade price factor is 0.034. In this case a 

1% increase (decrease) in the book/price ratio for a WINKS traded stock will cause the 

stock’s PPT to increase (decrease) by approximately 3.4%. Firms with strong historical 

accounting profitability relative to trade price are efficiently traded by WINKS. 

5.4.3 Firm Capitalization 

The quasi-elasticity metric for firm size (market capitalization) is 0.011. The size of this 

weight demonstrates a lack of bias for large-cap firms. That is, for each 1% increase in firm 

size (capitalization), PPT is expected to increase by a modest 1.1%. Ozenbas, et. al. (2010) 

have provided a congruent view in their report on intraday stock volatility. The authors find 

that large-cap stocks lead smaller-cap stocks in finding new equilibrium values.  

5.4.4 Price Change Momentum 

The technical indicator “Difference Between the Stock Price and its 50-day Moving Average” 

provides a proxy for the momentum effect. Traditional trading logic suggests that whenever 

the instrument price rises (falls) above (below) its moving average, a buy (sell) signal is 

generated. The K4-RANN quasi-elasticity weight for this factor is reported as 0.021. This 

reported finding indicates that for a small deviation in stock price, say 1%, above (below) the 

50-day moving average, the expected trading profitability under WINKS increases 
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(decreases) by 2.1%. Prior evidence provided by Schnusenberg (2006) on the momentum 

effect is consistent with this elasticity metric. In the 2006 study, Schnusenberg found little 

stock price momentum was associated with abnormal returns after a stock achieved new 

market highs.  

5.4.5 PEG Ratio 

The price/earnings to growth (PEG) ratio is used to determine a stock's value relative to its 

current earnings growth. The PEG ratio provides a more complete investment picture than 

that offered by the unadjusted P/E ratio. By way of example, the lower the PEG ratio, the 

more undervalued the investment opportunity given its current earnings performance. In this 

model, the K4-RANN weight for the PEG ratio is 0.009. A 10-percent increase (decrease) in 

this ratio would be expected to increase PPT by just less than 1%.  

5.4.6 Constant Term 

The weight associated with the constant term is used to determine the value of the WINKS 

NHFT system when all input factors taken together fail to explain traded profitability. To the 

trader, this is similar to a scenario where she decides to ignore all input variables (i.e., assume 

their current levels all equal zero), the trader would expect the loss on traded funds managed 

by WINKS to approximate (2.6) percent.  

6 OBSERVATIONS AND CONCLUSION 

This research embraced two objectives. The first was to develop a supporting theory and 

application protocol to support a behavioral approach to the near high-frequency trading of 

market securities. Within this context, the research evolved an automated dual RANN NHFT 

platform – WINKS. With an applied focus on the role of pedagogy to support HFT, the 

research introduced an empirical test of the WINKS platform with contextual support of the 

generalized SMIF. The findings generated from the WINKS simulation applied to both a 

small- and a large-cap SMIF produced comparative results that reinforced current finding of 

fact. Post simulation risk metrics were consistent with extant findings on performance 

differences between small- and large-cap funds. For example, there was a clear indication 

that WINKS management produced greater after-cost risk-adjusted returns for the small-cap 

SMIF than it did for the large-cap student fund. 

The small-cap fund, SMIF-01, also exhibited a significant response to MVHR hedging. 

Although the VaR metric was identical for fund M and fund U (1.96%), the hedged version of 

the portfolio earned a substantially higher expected daily return (0.06% vs -0.02%). Focusing 
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on the comparison between the WINKS traded portfolio, T, and portfolio M we find some 

previously undiscovered results. The comparative M
2
 metrics were virtually identical for M 

and T (15.56% vs 15.86%), but the VaR metric for portfolio T was noticeably smaller (1.13% 

vs 1.96%). This finding allows us to conclude that NHFT under WINKS management 

produces less tail risk while generating greater overall fund returns (0.06% vs 0.11%). 

Similar findings were presented for the large-cap fund, SMIF-02. While the small-cap fund 

experienced a greater number of trades, the large-cap fund exhibited the potential for smaller 

catastrophic risk (with lesser return opportunities). Lastly, we noted that the BRIC portfolio 

had no measureable returns correlation with the domestic S&P 500 index. Not surprisingly, 

the simulation results for this portfolio led us to conclude that the portfolio is not suitable for 

either WINKS management or MVHR hedging. 

The second objective of the research postulated an extension to the empirical estimation 

of a double-log production function to estimate the allocative efficiency of firm fundamental 

variables in the production of profitable automated market trades. To this end, quasi-elasticity 

coefficients were estimated by K4-RANN mapping. The estimated elasticity coefficients 

confirmed diminishing returns-to-scale om the production of profitable trades by over 

reliance on firm fundamental factors to drive profitable NHFT under WINKS management. 

The aggregate review of WINKS performance leaves at least two important questions 

unanswered. First, it is logical to ponder if there is a specific method that analysts should rely 

upon to evaluate algorithmic model risk. Models are known to evolve over time. With that 

said, this research does not address the time frame of algorithmic model review nor does the 

research attempt to determine how operational risk should be managed within the context of 

24/7 global trading. Model performance on both domestic and international securities is a 

clear research issue in version 1.1.4 of WINKS. A second unanswered question is directed at 

the process by which one can identify trading instruments that have a high probability of 

profitable trades under WINKS control. A partial resolution of this question evolved as the 

research addressed the manuscript’s second primary objective. During the process of 

developing a behavioral learning equation to map profitable trading performance, the 

elasticity estimates of the five production factors provided insight on how to construct a 

fundamental variable stock screener. The stock screener would help identify securities with a 

high propensity to trade profitably within WINKS. For example, the role of market beta was 

found to be of greater importance than, say, a firm’s PEG ratio. 

Other important operational questions remain for future research. For example, knowing 

that WINKS (and automated trade algorithms in general) produce unprofitable trades, it is 



Dash \ Kajiji: NHF  Production Economics for Global Wealth Creation… Page -27- 

imperative that we investigate a philosophy for trading loss mitigation. For example, 

questions like, “Just how long the automated system should remain invested in a losing 

trade?” Overall, this paper provided new evidence that academic pedagogy can and should 

introduce HFT (and NHFT) tools and active fund hedging as a part of the SMIF experience. 

With the promising results obtained by executing the behaviorally based prediction systems 

that underlie the WINKS NHFT approach, a compelling argument exists to expand allied 

research efforts and experiential opportunities.   
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APPENDIX A: BRIC PORTFOLIO 

BRIC-Part 1 BRIC – Part 2 

 Beta 

Market  

Cap 

(B$) 

 Beta 
Market 

Cap (B$) 

BAK 2.09 $2.92 ITUB 1.76 $44.84 

BBD 1.92 $33.97 MBT 1.50 $7.69 

BORN 3.20 $0.03 MTL -0.25 $0.34 

BRFS 0.62 $16.96 ONP 0.09 $0.04 

BSPM 3.76 $0.01 PBR 2.22 $36.79 

CBD 1.95 $4.90 RDY 0.72 $11.32 

CGA 0.30 $0.06 REDF 1.89 $0.04 

CIG 1.41 $3.22 SBS 3.02 $2.99 

CPL 1.35 $4.82 SEED -0.59 $0.03 

CTCM 3.86 $0.27 SID 1.67 $1.17 

ELP 1.70 $2.46 SIFY 1.65 $0.18 

EPI 1.08 n/a SPU -0.60 $0.03 

ERJ 0.65 $4.86 SEED -0.59 $6.30 

FBR 0.44 $7.97 SID 1.67 $17.07 

GFA 2.25 $0.23 SIFY 1.65 $9.98 

GGB 0.86 $2.63 SPU -0.60 $24.99 

GOL 2.16 $0.35 TSU 0.77 $19.69 

HDB 1.05 $307.85 TTM 1.85 $30.73 

IBN 1.92 $28.24 UGP 1.28 $1.61 

IFN 1.14 $0.77 VALE 0.93 $44.84 

IGC 2.66 $0.00 VIV 0.62 $7.69 

IIF 1.07 n/a WIT 1.18 $0.34 

INFY 1.72 $41.51 WNS 0.54 $0.04 

INP 0.96 n/a Average  $17.00 
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