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Abstract 

 
Volatility modeling is a key to performance enhanced strategies in the derivative- and 
asset-pricing evaluation process.  As such, it is understandable that a voluminous 
literature has evolved to discuss the temporal dependencies in financial market volatility.  
Much of this literature has been directed at daily and lower frequencies using ARCH and 
stochastic volatility type models.  With access to high frequency and ultra high-frequency 
databases, more recent research has been able to explain about fifty percent of the 
interdaily forecasts of latent volatility.  Relying upon hourly intervals, the GARCH(1,1) 
results presented here are consistent with prior studies.  However, this paper adds to the 
tools available for conducting volatility exploration by introducing an adaptive radial 
basis function neural network that significantly lowers overall prediction error while 
maintaining a high explanatory ratio.  The newly formulated RBF implements a closed-
form regularization parameter with prior information.  It is an algorithmic extension that 
will permit more accurate and insightful analyses to be performed on high frequency 
financial time series.
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Over the past decade, research efforts increased significantly in the area of 

modeling volatility behavior in capital market high frequency data.  Obtaining accurate 

volatility forecasts is a key part of the process by which derivative-pricing and asset-

pricing models are evaluated.  But, the modeling process is challenged by the complex 

patterns observed in many high-frequency financial time series.  Conventional wisdom 

suggests that it is the continuous arrival of macro-economic news, return volatility, and 

overall market oscillations that shape these complex time-series.  These factors are 

magnified by the fact that continuous-time data does not arrive at equally spaced time 

intervals.   Faced with investment strategies that require modeling accuracy, the financial 

economist has an unyielding need to uncover prudent methods that best explain high-

frequency (and now ultra high-frequency) data series.  Ghysels, Harvey, and Renault 

(1996) provide recent evidence of this large-scale effort.  One of the more popular 

strategic frameworks to surface in recent research on time-series volatility is the 

generalized autoregressive conditional heteroscedasticity framework (GARCH) of 

Bollerslev (1986).  Another line of exploration that has proven fruitful has come via the 

utilization of artificial neural nets (ANN). 

 

In this paper we focus our efforts on the explanatory power of a radial basis 

function (RBF) ANN when applied to high frequency volatility.  We apply the RBF-

ANN to the problem of measuring the information content in the one-day ahead volatility 

of foreign exchange futures-options.  The RBF explored in this research is augmented by 

the inclusion of a closed-form solution for the estimate of the regularization parameter.  

Additionally, the RBF-ANN includes a Bayesian derived information set.  The goal of 

these extensions is, of course, to produce a more accurate modeling framework. 

 

The plan of the paper is as follows.   Section 1 presents notation and introduces 

the sample data set.  Section 2 focuses on modeling financial time-series under the 

GARCH framework.  The results of the GARCH model applied to the sample data are 

presented in section 3.  The RBF-ANN is introduced in Section 4.  Section 5 concludes 

the paper by providing a comparison of the GARCH findings with those obtained from 

solving the RBF-ANN.  



-2- 

1.  Notation and Data 
 
 

The models presented in this paper are based on hourly returns obtained from 

closing quotes on the dollar exchange with the German deutsche mark (DM), Japanese 

Yen (JY), and the Swiss Franc (SF) as traded on the Chicago Mercantile Exchange 

(CME).  Tick observations on currency futures options data are obtained from the Futures 

Industry Association while closing tick-quotes for futures contracts are obtained from 

Tick Data, Inc (Tick Data).1  In addition to the currency-related data, high-frequency 

futures data on the U.S. Treasury Bill (TB), the dollar index (DX), and the U.S. Treasury 

Bond (US) are also obtained from Tick Data.  The sample period for the DM extends 

from January 4, 1999 to August 06, 1999.  For both the JY and the SF the sample period 

is from January 4, 1999 to December 31, 1999.   The tick observations are aggregated 

into equally spaced intervals of one-hour beginning with the 9:00 a.m. closing quote.  

The last quote of the day is captured with the 1:59 p.m. trade.  This results in 750 

observations for the DM and 1,248 observations for all other contracts. 

 
1.1  Hourly Risk-Free Rate 

 

The continuously compounded risk-free rate is derived from the tick Futures 

contract (Fi) on the 90-day T-Bill (TB).  First, we compute the price per $100 of par 

value (P100): 

( )100

91
$100 $100

360iP F
 = − −  
 

.  (1) 

Next the yield or the risk-free rate on the 91-day T-bill is computed as. 
 

100

$100 365
1

91
yield

P

   = −  
  

   (2) 

which is then subjected to a log transformation to produce the continuously compounded 

risk-free rate:  

ln(1 )cr yield= +   (3) 

                                                
1 See http://www.fiafii.org and http://www.tickdata.com , respectively. 
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1.2  Hourly Futures Returns 
 

The first one-hour period begins at 9:00 am, one-half hour after the market opens 

at 8:30 a.m.  The last observation in the transformed data set ends at 1:59 p.m., one-hour 

before the market closing at 3:00 p.m.   Both the first one-half hour and the last hour of 

trading are excluded in order to eliminate daily anomalies.  Trade prices beginning with 

the trade closest to the 9:00 a.m. hour were used to compute rates of return on all futures 

contracts.  Rates of return were derived as follows,    

1ln( ) ln( )t t tr F F −= −   (4) 

Where: ri  =  ith period rate of return  
 Fi   = Futures contract closing price for the ith period 
 

 

To create an equally spaced hourly observation a geometric average of the within 

hour rates of returns was computed across the daily hours of trading.  Stated differently, 

the target variable is a geometric average of the within hour trade returns which is 

derived by,  

1/

1

(1 ) 1 100
nn

t i
i

r r
=

  
= + −     

∏   (5) 

Where: 
 rt   =  tth hour geometric return in percentage format 
ri   =   ith period rate of return 

 n   =   number of trades in an hour  
 

 

The option contract ISD is matched with the hourly sequence of continuously 

compounded futures contract returns until option expiration.  The future volatility (or 

realized volatility) is obtained from the variability of these returns.  Annualized volatility 

is measured by multiplying future volatility by 79.3725 (the square root of 252 multiplied 

by 5). 
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2.  Modeling Futures Options 
 
 
2.1  ISD and Observation Timing 
 

Estimates of implied volatilities are calculated hourly for call options with 60 or 

fewer days to expiration.  All implied volatilities are derived from the Black (1976) 

model for European options on futures, 

 
 

)]()([ 21 dENdFNeC Trc −= − ,  (6) 

 
Where: 
 

2

1

ln( / ) 2
,

X

F E T
d

T

σ

σ

 +  
 =  and 

Tdd σ−= 12  

 
In the above equation F is the futures rate , E is the exercise price, T is the time to 

option expiration, σ the volatility, and r is the risk-free rate.2  Following Beckers (1981) 

we invert closest at-the-money calls.3  When using tick-data there is always a possibility 

of non-simultaneous trades.  As Jorion (1995) reports, measurement errors can 

substantially distort inferences on daily data.  In this study we compute the hourly ISD 

based on the geometric average of calls traded within the time frame that begins on the 

hour and terminates 59 minutes past the hour. 
 
 
 
 

                                                
2 CME options are American style and those pose a small inconsistency with the Black-Scholes model. As 
shown in Jorion (1995) using a model based on European style options tends to overestimate the true 
volatility of the option by approximately 12 percent.  As with Jorion, we consider this overestimation as 
inconsequential. 
3 It is well known that for out-of-the-money options as strike prices increase implied volatility increases.  
Conversely, it can be shown that in-the-money calls are less expensive than Black-Scholes theory predicts. 
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2.2  GARCH 
 

The GARCH model was first developed to model data at the daily frequency level 

or greater.  Because volatility persistence is known to exist in high frequency data as 

well, there is a keen interest in applying GARCH methods to short-term volatility 

questions.  Research findings of how well the simple GARCH model is able to reproduce 

heteroscedastic behavior in high frequency data is mixed.  Several studies are not 

supportive of the model when applied to high frequency data (see Andersen and 

Bollerslev (1994); Guillaume et al. (1994); Ghose and Kroner (1995); and, Dacorogna et 

al. (1998).  Specifically, the consensus finding of these studies suggest that when high 

frequency data is modeled by GARCH, volatility memory is short-lived and weakly 

explained by ex-post squared returns.  Conversely, daily (or lower) data displays a long-

lived volatility memory.   Andersen and Bollerslev (1997) address this apparent conflict.  

They show that standard GARCH models are capable of predicting close to fifty percent 

of the variance in the latent one-day ahead volatility factors.  These results were achieved 

within a continuous-time stochastic volatility framework that allowed for the construction 

of a new ex-post volatility measurement that is based upon cumulative squared intra-day 

returns.4   

 

The weak-form GARCH model of Bollerslev (1986) generalized the original 

autoregressive conditional heteroscedasticity (ARCH) model of Engle (1982).  For a time 

series variable tx , the model is expressed as: 

 tx  =    t tzσ   (7) 

where:  2 2 2
0 1 1 1 1t t txσ α α β σ− −= + +   (8)  

                                                
4 For more comprehensive surveys on the subject of the GARCH framework see, for instance, Diebold and 
Lopez Diebold, F. X. and J. A. Lopez (1995). Modeling Volatility Dynamics. 
Macroeconometrics:  Developments, Tensions, and Prospects. K. D. Hoover. Boston, 
Kluwer Academic Publishers., Bollerslev, Engle and Nelson Bollerslev, T., R. F. Engle, et al. 
(1994). ARCH Models. Handbook of Econometrics. R. F. a. M. Engle, D.L. Amsterdam, 
Elsevier Science., Bollerslev, Chou and Kroner Bollerslev, T., R. Y. Chou, et al. (1992). 
"ARCH Modeling in Finance: A Review of the Theory and Empirical Evidence." Journal 
of Econometrics 52: 5-59., and Bond Bond, S. A. (2000). Asymmetry and Downside Risk 
in Foreign Exchange Markets. Department of Land Economy. U.K., Cambridge, 
University of Cambridge: 51.. 
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and ~tz NID(0,1), for 0 1, 0α α ≥ and 1...t T= .   The model implies that tx | 1t −Ω ~ 

2
1(0, )tN σ − .5  The model is particularly interesting in financial research as the model 

permits tx  to be leptokurtotic and can capture seasonality (‘volatility clustering’) that is 

known to characterize financial data.      

 
 

3. Analysis 
 

In this section we focus on describing real-time market dynamics within the 

context of the hourly returns.  Our purpose is to provide a limited comparison of the 

weak-form GARCH framework applied to hourly data with the established results 

obtained from application to daily data.  The analysis presented below focuses on 

modeling variation in return volatility.  While it is of interest, this study does not attempt 

to develop findings regarding the long-term memory features of volatility.  It is our belief 

that “memory” is best investigated with higher-frequency data.  The modeling process is 

further challenged by factors that are symptomatic of high frequency data.  These factors 

include, but are not limited to intraday seasonality, macroeconomic announcements, 

reaction to news releases, and errors that may arise in the information transmission and 

recording process.  The effects of these low-frequency impacts are the subjects of 

continuing research.  We proceed by generating descriptive statistics, followed by an 

analysis of returns and volatility.  This section concludes by reporting the information 

content in ISD and conditional volatility as well as the prediction capability of these same 

measures. 

 
 
3.1  Descriptive Statistics 
 

Table I provides descriptive statistics of the three currency contracts.    These 

statistics include the one-hour return, volatility, and ISD.  The one-hour ISD is taken 

from an average hourly futures price as applied to the nearest at-the-money futures option 

within hour.  At any hour the “realized” (future) volatility is the average of the contract’s 

                                                
5 Other non-normal conditional distributions have been used in the model specification.  By way of 
example, see Nelson 1991. 
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volatility to expiration up to the hour of expiration.6  Annualized volatility measures are 

obtained by multiplying the square root of 252 by 5 hours.  Interest rates are specified in 

hourly terms.  All contracts follow the March-June-September-December cycle.  Rolling 

over expiring contracts into the nearest-at-the-money contract in the next expiration 

month creates a continuous contract of hourly returns, implied- and realized-volatilities. 

 

3.1.1  Returns  
 

The hourly returns for the three FX contracts follow a pattern that is well 

documented.  The hourly standard deviations are 0.7375, 0.9763, and 0.8343 percent, 

respectively.  These findings are similar to those reported by Jorion (1995) on daily data 

with one notable difference.  For the hourly results, the JY has higher standard deviation 

than the other two contracts.  But, as in the case of daily findings, the standard deviation 

for the DM and SF are about the same.  In all three cases the hourly mean return is 

negative.  Although the JY is more volatile, its mean return is no different than that of the 

SF.  Both the SF and JY produce a return that is higher than the less volatile DM.  

Figures 1a, 1b, and 1c display the hourly returns for the DM, JY and SF, respectively. 

 

Figure 1a 

Deutsch Mark Hourly Returns
Jan 4, 99 - Aug 6, 99

Time
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6 Following Jorion 1995 and as shown by Baillie and Bollerslev 1989 we know that the weekend variance 
must be higher than during the weekday.  However Jorion has shown that for daily observations the 
difference between the weekend and weekday variance is small.  Hence, we do not distinguish between the 
two. 
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Table I: Descriptive Statistics 
 Descriptive Statistics Autocorrelations 
 Mean Std. Dev Lag1 Lag2 Lag3 Lag4 Lag5 Lag10 Lag20 Lag100 Lag250 
DM            
  1-hour return  -0.0011 0.7375 -0.216 -0.092 -0.156 -0.047 -0.064 0.111 0.035 -0.082 0.083 
  1-hour volatility (%) 0.1726 0.4090 0.179 0.031 0.031 0.017 -0.016 -0.023 0.079 -0.023 -0.010 
  ISD Volatility (%) 0.7704 0.7306 0.571 0.370 0.219 0.143 0.181 0.087 -0.008 0.019 0.035 
  Conditional Volatility 0.5491 0.2321 0.872 0.759 0.657 0.555 0.476 0.224 0.128 -0.100 0.072 
JY            
  1-hour return  -0.0008 0.9763 -0.342 -0.124 -0.011 -0.058 0.094 0.058     0.056    0.089 0.043     
  1-hour volatility (%) 1.4429 8.7089 0.002 0.007 0.107 0.005 0.008 0.007 0.019 -0.007 -0.004 
  ISD Volatility (%) 1.5485 1.3246 0.425 0.396 0.373 0.369 0.408 0.377 0.285 0.047 -0.026 
  Conditional Volatility 0.9707 0.4712 0.991 0.978 0.963 0.944 0.923 0.813 0.612 0.019 0.032 
SF            
  1-hour return  -0.0008 0.8343 -0.324 -0.092 -0.083 0.012 0.004 0.017 0.043 -0.030 -0.010 
  1-hour volatility (%) 0.4653 1.3982 0.193 -0.003 0.060 0.036 0.062 0.102 0.026 0.007 -0.016 
  ISD Volatility (%) 0.8453 0.7105 0.557 0.393 0.291 0.284 0.231 0.264 0.179 -0.057 0.001 
  Conditional Volatility 0.7088 0.5115 0.990 0.976 0.960 0.940 0.920 0.832 0.635 0.027 -0.133 
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Figure 1b 

Japanese Yen Hourly Returns
Jan 4, 99 - Dec 31, 99
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Figure 1c 

Swiss Franc Hourly Returns
Jan 4, 99 - Dec 31, 99
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3.1.2  Volatility 

Volatility findings are consistent with those provided on daily data.  The observed 

autocorrelation in the hourly realized (future) volatility provides strong evidence of 

volatility persistence.  Autocorrelation is significantly positive in lag 1 for all contracts 

and remains positive up through lag 4.  For the JY and the SF autocorrelation remains 

significant up to lag 20.  Although the lags are small, the longer-term persistence in 

positive lags for both the JY and SF are quite evident. 

 

The implied volatility findings provide further insight into the autocorrelation 

structure.  Clearly, the JY was the most volatile of the three currencies over the test 

period.  The standard deviations of the implied volatility for the both the DM and the SF 

are nearly identical.  The analysis is more striking upon the comparison of the mean 

values for one-hour volatility and ISD volatility.  The JY mean values are nearly the 

same.  Stated differently, for all currencies the mean ISD volatility is higher than the 

mean of the one-hour volatility.  The results reported here do not immediately lead to any 

conclusions about the robustness of the ISD estimate.  That is, there is no evidence of 

consistent over- or under-representation of the realized future volatility. 

 

Figures 1, 2 and 3 display the volatility patterns for the DM, JY, and SF, 

respectively.  Each figure shows time variation in ISD, realized future volatility, and 

conditional volatility measured in percent per hour.  Time variation is obvious in both the 

ISD and future volatility across all country denominated series.  In the next section we 

present GARCH estimates for each time series. 

 
3.2  GARCH Estimate 
 

Using hourly returns data the GARCH(1,1) is estimated.  Parameters α1 and β 

were subjected to the typical stationarity constraint.  This constraint is necessary and 

sufficient to examine a finite, time-independent variance of the innovations process.  The 

reported χ2 statistic of the GARCH estimate confirms that a GARCH process is 
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describing a statistically significant amount of the conditional variance in returns.7   The 

results presented in Table II of this study are consistent with GARCH(1,1) results applied 

to daily data as reported in all prior research.8   Realized hourly volatility is stationary, 

but it does change over time. 

 
 
Table II: Estimation of GARCH(1,1) Process 
Currency Model µµ αα0 αα1 ββ Long-

Run 
Volatility 
(% pa) 

Log-
Likelihood 

Pr > χχ2 

DM GARCH 
(pr) 

0.0046 
(0.8376) 

0.0568 
(0.0001) 

0.0850 
(0.0001) 

0.8128 
(0.0001) 

 26.41 -814.63 0.0001 

JY GARCH 
(pr) 

-0.0192 
(0.4592) 

0.2371 
(0.0001) 

0.1603 
(0.0001) 

0.5986 
(0.0001) 

 35.17 -1704.52 0.0001 

SF GARCH 
(pr) 

 -0.0108 
(0.5528) 

0.0356 
(0.0001) 

0.1233 
(0.0001) 

0.8296 
(0.0001) 

 30.75 -1444.49 0.0001 

(pr) = p-value 
 

 
 
3.3  Information Content 
 

We turn our attention to role of the hourly ISD in forecasting next period 

volatility.  The following regression models examine the information content of ISD: 

 
2

1 1
ISD

t tR a bσ ε+ += + +   (9) 

 
2

1 1
GARCH

t tR a bσ ε+ += + +   (10) 

 
2

1 1
ISD GARCH

t tR a b cσ σ ε+ += + + +   (11) 

 
 

                                                
7 It is well known that daily rates are correlated.  The pairwise correlations in the hourly futures prices 
changes do not show a significant correlation profile.  The correlations are: DM/JY, 0.0022; DM/SF, 
0.0540; and, JY/SF, 0.0206.  The pairwise correlation p-values are: DM/JY, 0.9522; DM/SF, 0.1397; and, 
JY/SF, 0.4671.  Despite these findings, we caution the reader to exercise caution when comparing 
regression-based results. 
8 OLS, Hansen-White, and GARCH estimates are obtained from version 8e of the Statistical Analysis 
System (SAS), North Carolina. 
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Our expectation for each model is the slope parameter for each equation.   Our objective 

is to identify whether  ISDσ and GARCHσ  explain meaningful information in the future 

volatility.  We expect the parameters to be statistically significant and non-zero in all 

cases.  

 
 
 

Table III:  Information Content Regression 
Slopes on Currency 

Intercept ISD GARCH 
R2 MSE 

DM - (9a) 0.4323 
(0.0001) 

-0.0548 
(0.0806) 

 0.0041 0.3912 

(9b) 0.2754 
(0.0001) 

 0.2088 
(0.0343) 

0.0060 0.3905 

(9c) 0.3146 
(0.0001) 

-0.0591 
(0.0592) 

0.2204 
(0.0255) 

0.0107 0.3892 

JY - (10-a) 0.5975 
(0.0001) 

0.0341 
(0.0285) 

 0.0038 0.5290 

(10b) 0.5689 
(0.0001) 

 0.0840 
(0.0553) 

0.0029 0.5295 

(10c) 0.5131 
(0.0001) 

0.0348 
(0.0256) 

0.0860 
(0.0494) 

0.0069 0.5278 

SF – (11a) 0.5621 
(0.0001) 

-0.0367 
(0.0158) 

 0.0047 0.4363 

(11b) 0.3301 
(0.0001) 

 0.2517 
(0.0001) 

0.0378 0.4218 

(11c) 0.3849 
(0.0001) 

-0.0656 
(0.0113) 

0.2526 
(0.0001) 

0.0427 0.4199 

 
 

The information content findings are presented in Table III.9  Based on the 

reported R2, none of the models offer much explanatory power in the determination of 

future one-hour volatility.  R2 Statistics range from a low of 0.0060 to a high of 0.0427.  

Focusing on the parameters, the role of ISD is mixed.  The role of ISD is significant for 

all currencies.  Except for the JY, and in contrast to reported findings on daily data, the 

ISD coefficient is negative.  The inverse relationship between future volatility and ISD is 

not an intuitive one.  However, in prior studies the role of α was statistically 

insignificant.  In this study α is positive and significant at the 5-percent level for all 

currencies.  Given the relatively low explanatory power of the hourly models, this could 

                                                
9 As with prior studies, the methodology employed here does not produce an overlap in the depandent 
variable.  Hence, OLS derived p-values are presented here. 
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be an indication that the models are missing an important explanatory variable.  We 

would suspect that the information content regressions would benefit by the inclusion of 

a variable to account for economic announcements. The results presented here suggest 

that at the hourly level, macroeconomic events may not be captured by ISD or GARCH 

volatility.10   

 

Of particularly importance is the presentation of MSE for each model.  The 

reported MSE is used later to compare the efficiency of the information content models to 

the RBF-ANN counterparts.  The MSE results presented in Table III follow the other 

statistical results in this section.  On average, the MSE is lowest for the DM and highest 

for the JY.  This reflects the volatility analysis from above. 

 

When the ISD and GARCH time-series are treated together, the explanatory 

power of the future returns is as expected.  Except for a small discrepancy with the DM, 

all slopes are significant at the 5-percent level.  R2 values increase for each model within 

currency model group.  The reported MSE value is the lowest when compared to the 

other two models within currency group.  Again, for each model α is statistically 

significant; this is a finding that continues to suggest the effect of an omitted variable.  

  

Figure 2a, 2b, and 2c display the time-variation in ISDσ , GARCHσ  and the 

corresponding realized volatility measured in percent per hour.   The average annualized 

percentage volatility for the DM, JY, and SF is about 23, 114, and 37 percent, 

respectively.  The performance of the GARCH(1,1) model is quite satisfactory when 

applied to the squared returns.  Except for areas demonstrating intraday seasonality, the 

coherence between the volatility forecasts and the ex post volatility measure is quite 

good. 

 

 

 

                                                
10 The DM parameter does report a positive sign.  However, as mentioned this variable is not significant at 
the 10-percent level.  The JY is clearly insignificant and is reported with a negative sign. 
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Figure 2a 

Volatility of the Deutsch Mark Futures
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Figure 2b 

Volatility of the Japanese Futures

0

2

4

6

8

10

12

14

16

1/4
/19

99

1/1
9/1

99
9

2/3
/19

99

2/1
8/1

99
9

3/5
/19

99

3/2
2/1

99
9

4/6
/19

99

4/2
1/1

99
9

5/5
/19

99

5/2
0/1

99
9

6/7
/19

99

6/2
1/1

99
9

7/7
/19

99

7/2
1/1

99
9

8/5
/19

99

8/2
0/1

99
9

9/3
/19

99

9/2
1/1

99
9

10
/5/

19
99

10
/21

/19
99

11
/5/

19
99

11
/22

/19
99

12
/8/

19
99

12
/22

/19
99

V
ol

at
ili

ty

Implied Volatility Hourly Absolute Returns Conditional Volatility
 

 

 

 



-15- 

Figure 2c 

Volatility of the Swiss Franc Futures
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4.  Futures Options Predictability via a RBF ANN 
 

Artificial neural networks and nonparametric methods have become increasingly 

important in the study of high-frequency financial data.  Impressive results utilizing daily 

frequencies have already been reported.  Malliaris and Salchenberger (1996) and 

Niranjan (1997) each report superior results from the application of the neural network 

methods to the problem of modeling options volatility when compared to other statistical 

methodologies.  Hutchinson et al., (1996) propose the use of ‘smoothing’ based neural 

net topologies as a method to price options.  Other nonparametric or mixed applications 

are prominent in the literature as well.  For example, foreign exchange rates have been 

successfully modeled in a mixed Kalman filter neural network architecture (see Bolland 

et al. (1998)); prediction of financial distress (Coats, et al. (1992)), and the modeling 

stochastic systems by Elanyar, et al. (1994) offer contrasts between traditional 

methodologies and the incorporation of nonparametric methods.  The prediction of stock 

market performance by Refenes and Bolland (1996), forecasting model selection by Sohl 

and Venakatachalam (1995), and forecasting futures trading volume by Kaastra and Boyd 
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(1995) provide additional useful examples.  ANN have also been collapsed with other 

artificial learning methods as well as multivariate statistical methods to derive improved 

model accuracy.  Olaf  (1997), for example, blended a genetic algorithm with an ANN to 

produce improved prediction of stock index returns.  

 

Because of the adherence to contemporary financial theory, the Hutchinson, Lo, 

and Poggio study deserves additional mention.  In this study a RBF ANN was trained on 

artificially induced prices from solving the Black-Scholes option pricing formula 

(BSOP).  With as little as six months of daily data, the ANN pricing results compared 

reasonably with the outcomes produced by the BSOP.  The authors note that an attractive 

feature of the RBF ANN is its reliance on regularization techniques.  The regularization 

approach to RBF application was shown to perform well in its approximation of both the 

BSOP equation and its derivatives.  This latter point is of particular interest as optimal 

hedging strategies require methods that are consistent with accurate derivative 

estimation.11   

 
4.1  Regularization Theory and RBF Neural Networks 
 

Poggio and Giorsi (1990a; 1990b) introduced the theory of regularization in 

capital market neural net applications.  They suggested the use of regularization theory in 

neural networks as a way of controlling the smoothness properties of a mapping function.  

The supervised learning function is stated as, 
 

( )y f x=     (12) 

Where:  

1

2

n

x

x
x

x

 
 
 =
 
 
  

M    

                                                
11 For a more complete discussion on the approximation accuracy of the RBF ANN when applied to a 
function and its derivatives see, Poggio and Girosi 1990.  For a discussion on the general arguments of the 
approximation issue see Gallant and White 1992 and Hornick, Stinchcombe, and White 1990.   



-17- 

and,  
 

y = output vector 
x = input vector 
n = number of inputs 

 
The supervised learning function can be stated as a linear model, 
 

1

( ) ( )
m

j ji
j

f x xw h
=

= ∑        (13) 

where,  
m = number of basis functions (centers) 
h = hidden units via Broomhead & Lowe 
w = weight vectors 
i = 1..K output vectors  (target variables) 

 

 

The flexibility of f and its ability to fit many different functions is inherited from 

the freedom to choose different values for the weights.  The RBF-ANN is constructed as 

a supervised ANN least-squares method that is capable of solving for the optimal weight 

values from a designated data set known as the “training set.”  Further, we note that the 

RBF expression may also be viewed as a restatement of the Tikhonov’s (1977) 

regularization equation.  Under Tikhonov regularization a weight decay parameter is 

added to the error function to penalize mappings that are not smooth.  The minimum error 

function value is found by optimizing the set of smoothing weights.  

 

Traditionally, in the RBF framework iterative techniques are used to compute the 

weight decay parameter (see Orr (1996; 1997)).  But, iterative techniques have known 

drawbacks.  In addition to being computationally burdensome, iterative methods lack 

specificity, as they require an initial estimate for the regularization parameter.  It is not 

uncommon for iterative methods to terminate at a local minimum, or produce inflated 

residual sums of squares when the ridge parameter goes to infinity. 
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4.2  Regularization Parameter:  A Closed Form Solution 
 

Crouse, Jin, and Hanumara (1995) offer a closed-form method for the estimation 

of an optimal ridge-parameter in ridge-regression.  These authors go on to enhance the 

derivation by including a Bayesian enveloped prior information matrix.  The Kajiji 

(2001) RBF-ANN implements a similar closed form solution (with a prior information 

matrix) to derive the initial estimate of the regularization parameter used in the solution 

of the RBF-ANN.  Kajiji reasoned that an optimally derived estimate would lead to a 

reduction of the noise-induced inflation in the residual sum of squares (MSE inflation).  

Hemmerle (1975) proposed an alternative closed-form solution to the estimation of the 

ridge-regression parameter by offering a modification to the original Hoerl & Kennard 

(1970) iterative method.  In contrast to the Crouse et al. method that produces a globally 

optimized parameter, Hemmerle’s method produces a vector of optimized ridge 

parameters.  Kajiji (2001) adapted both closed-form proofs to produce a new RBF-ANN.   

 

In the next section, we apply the Kajiji-RBF framework to the volatility 

prediction problem.  The results of solving the Kajiji-RBF algorithms produce an MSE.  

This MSE extraction leads to a direct comparison of the MSE results obtained from the 

information content of the GARCH analysis. 

 
 

5.  Comparative Analysis 
 

The Kajiji-RBF algorithm is capable of solving several alternative RBF 

topologies.  For conciseness and brevity we limit our detailed comments to the solutions 

produced from the algorithmic specification of greatest interest.  Specifically, we refer to 

this algorithm as Kajiji-4; it is a RBF algorithm that relies upon a closed form derivation 

for estimation of the regularization parameter with a prior information set.  The Kajiji-4 

model topology produced the smallest MSE statistics across all versions of the Kajiji 

RBF algorithmic framework. 
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5.1  Macroeconomic Factors 
 
 There is increasing evidence that intraday return volatility is linked to the release 

of regularly scheduled macroeconomic announcements and other news events.  

Bollerslev, Cai, and Song (2000) find strong evidence of announcement effects in the 5-

minute returns of U.S. Treasury bonds.  Utilizing these findings we introduce two new 

variables to the RBF simulations.  Added are the hourly intraday returns for U.S. 

Treasury bond futures (TB) and the U.S. Dollar Index (DX).  Both variables are treated as 

proxies for macroeconomic- and news-announcements.  The TB futures contract is well 

known and documented in the literature.  The DX is the futures contract on the Federal 

Reserve Bank of Atlanta’s trade-weighted dollar index.  The latest revision of the DX 

produced an index that captures the effects of the United States’ 15 largest trading 

partners.  We expect the TB to capture the U.S. based announcement effects and the DX 

to capture the combined effects of announcements by the represented trading partners.12 

 
 
5.2  The RBF-ANN Model Specifications 
 

The Kajij-4 algorithm was applied to four statistical models.    Model I is an RBF 

application of equation (11).  The Model II specification adds the hourly returns for the 

DX to the Model I specification.  Model III is Model II with the addition of the hourly 

returns for U.S. Treasury bond futures (TB).   Model IV reduces Model III by the 

dropping the ISD component.  Model V includes two predictor variables: GARCH and 

DX.  Finally, Model VI examines the predictability of GARCH and TB together. 

 
 
5.3  RBF Results 
 

The results of solving the Kajiji-4 algorithm on the four economic models are 

presented in Table IV.  The table displays the optimal weights obtained from the training 

set of data; the training set MSE and the test set MSE.  The test set is the data held in 

reserve to examine the ex-post predictive power of the trained ANN.  For this 
                                                
12 The pairwise correlation between TB and DX is –0.6643 with a p-value of 0.0001.  Although the two 
proxies for the macroeconomic effect are significantly correlated this should not pose a problem to the RBF 
ANN as the underlying methodology of ridge regression is well suited to handle collinear predictor 
variables. 
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experiment, the test set was kept to a minimum number of observations.  Since our 

objective is to compare the ability of the RBF-ANN to explain information content rather 

than to predict future occurrences of volatility, our efforts are extended on efficient 

training of the RBF. 

 
 
 
Table IV:  Information Content of Returns: RBF-ANN 
  

Weights 
Training 
Set MSE 

Test Set 
MSE 

 ISD GARCH DX TB   
DM       
  Model I -0.211825 0.954984   0.152787 0.437599 
  Model II 0.499772 0.258728 0.336745  0.174179 0.457883 
  Model III 0.396330 0.352969 0.308326 0.327398 0.175335 0.507098 
  Model IV  0.954023 1.121414 -0.624527 0.175334 0.494009 
  Model V  -0.171523 0.940443  0.174314 0.459409 
  Model VI  -0.198441  1.023938 0.175329 0.505138 
JY       
  Model I -1.066420 1.597764   0.467589 0.951658 
  Model II 1.202824 -0.370107 1.197315  0.467589 0.769282 
  Model III 3.457789 -1.526313 -1.343548 2.033734 0.467589 0.790742 
  Model IV  1.922160 -3.375070 4.202657 0.467589 0.781442 
  Model V  0.157938 0.660742  0.467589 0.952444 
  Model VI  -2.469492  3.113836 0.467589 0.953019 
SF       
  Model I 1.093531 0.737385   0.024500 0.536022 
  Model II 1.143419 1.610866 1.146307  0.000001 0.613796 
  Model III -1.616530 3.050662 2.187535 1.116123 0.000001 0.651792 
  Model IV  -3.004039 3.482911 2.200567 0.000001 0.647218 
  Model V  1.144421 0.620053  0.000001 0.617666 
  Model VI  1.269823  0.891271 0.000001 0.623689 

 
 
 As with the earlier GARCH framework, the results obtained for the JY stand apart 

from the DM and the SF.   For the SF all models except Model I are over-trained (over-

fitted).13   When compared to the test set, the training set MSE values indicate an ANN 

that is not capable of sustaining any reasonable level of prediction.  Hence, for the 

analysis of information content, we conclude that Model I presents the more accurate 

analysis when applied to both the DM and SF. 

 

                                                
13 In an over-fitted network the output variable fits the data forming the underlying function so closely that 
it also models the noise in the data set. 
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The Model I test set results may be compared directly to findings presented in the 

GARCH framework.  The MSE findings for the GARCH framework were reported as 

0.3892 for the DM and 0.4199 for the SF, respectively.   The RBF reduced the MSE by a 

factor of 2.5 for the DM and by a factor greater than 17 for the SF.  The results for the JY 

are strikingly different.  Each model formulation produced approximately identical MSE 

values for the training set MSE.  When compared to the MSE from the GARCH 

framework, the improvement is only marginal with an improvement factor of 1.13.  It is 

only the lower value of the test set that suggests which model may be preferred.  The 

lowest MSE value on the test set simulation is recorded for Model II, or the model that 

includes DX as a proxy for the macroeconomic news effect. 

 
 These results are complemented by the graphical representation of the findings.  

Figures 3a, 3b, and 3c present the modeling characteristics for the three currencies. 

 
 
 

Figure 3a 

RBF Volatility Modelling
Deutsch Mark
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Figure 3b 

RBF Volatility Modelling
Japanese Yen
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Figure 3c 

RBF Volatility Modelling 
Swiss Franc
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5.4 Summary and Conclusions 
 
 Within the context of the general theory of continuous time arbitrage-free price 

processes, this study presents a comparison of volatility modeling.  The study explicitly 

compares the predictive power of a GARCH framework to that of an RBF ANN 

framework.  In this study we rely upon futures options volatility measures inverted from 

hourly intervals.  The results of our implementation of a GARCH discrete model 

produced results that supported earlier findings on daily intervals.  Additionally, the 

GARCH based results presented in this paper support more recent findings that 

incorporate 5-minute interval high frequency data.  

 

 The use of nonparametric ANN methods in high frequency data modeling was the 

primary focus of this study.  We provide evidence in this paper that RBF-ANN 

topologies constructed on a closed-form regularization parameter is capable of modeling 

volatility information that is not fully captured in the traditional GARCH framework.  In 

all model formulations, the RBF solution dominated the error minimization functions 

recorded within the comparable GARCH formulation.  These results bode well for future 

model examinations that rely upon this family of RBF design.  Nevertheless, these 

encouraging research findings are tempered by a number of unanswered research 

questions.  For example, the use of MSE as a benchmark error measure is not without 

issue.  Additional error reporting statistics must be reported in future examinations.  The 

question of data frequency also requires further investigation.  Whether the augmented 

RBF will perform consistently on higher (lower) frequencies must be examined. 

 

The Kajiji-RBF ANN needs to address the derivation of  “optimal-value” 

parameter settings.  For example, the inclusion of dynamic parameter settings will, in all 

likelihood, lead to a genetically optimized version of the Kajiji-RBF ANN.  As applied in 

this research it is possible that the subjectively determined parameter settings produced 

an optimal but non-dominant solution; albeit, a solution that dominates the comparative 

GARCH findings.  Finally, there is the question of macroeconomic proxies.  At least one 

set of results presented here suggests that this issue deserves continued investigation 

when posited in an RBF formulation. 
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