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Abstract: Recent technological and regulatory advances have coalesced to usher in an era where both automated and 

algorithmic trading routinely characterize a wealth maximization process managed by the continuous trading of 

equity securities.  Under this approach to wealth maximization, automated trading focuses on the process 

determining directional trades for individual securities based upon the receipt and interpretation of new data.  This 

paper presents a stochastic price formation algorithm that implements a cognitive decision making system modeled 

by twin radial basis function artificial neural networks to produce a high frequency automated trading system for 

individual equity securities listed on U.S. exchanges.  The overall effectiveness and efficiency of the automated 

trading system is calibrated by estimating non-parametric quasi elasticity coefficients for individual firm 

fundamental characteristics.  We find that automation driven by cognitive science can effectively auto-trade 

securities and produce changes to individual wealth that equals or exceeds the performance generated by a simple 

buy-and-hold strategy.  We also identify four fundamental firm factors that explain the ability of the automated 

trading algorithm to produce a measured level of percent-positive trades. 
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1 Introduction 

How wonderful it would be to perfectly predict stock prices.  In such a world the individual seeking 

to maximize wealth would only be required to choose an appropriate risk level.  Owing to a myriad of 

different factors it is well known that consistent prediction of future stock price levels is not possible.  As 

a consequence, researchers have turned to quantitative modeling as a means by which to describe a 

comprehensive view of individual stock price behavior.  But, the evolving complexities of an ever 

expanding 24/7 global market has contributed to the need for decision-makers to understand and include 

behavioral consequences into the formulation of mathematical models of market price behavior.    

The purpose of this paper is to integrate cognitive science, or behavioral decision theory (BDT), with 

an artificial intelligence (AI) based multiple criteria decision aiding model (MCDA) to explain how 

individual’s trade equity securities in their attempt to maximize wealth while mitigating perceived risks to 

the wealth accumulating process.  To achieve this objective, we present a BDT information system that is 

engaged in the continuous receipt and evaluation of new information.  More directly, the system presented 

in this paper implements an MCDA artificial intelligence-based automated trading system that includes a 

nested decision subsystem.   

Automated trading of equity securities is a complex system that continuously integrates various 

cognitive and algorithmic processes that receive and interpret new market data in order to update the 

individual’s wealth share decision under the assumption of wealth maximization. The efficient automated 

trading system depends on its ability to use a set of mathematical models and market rules to 

automatically identify optimal market decisions.  These decisions include choices of whether to open, sell 

short, hold or close a specific equity position within the framework of the continuous trading evaluation.   

To evaluate one such automated trading information system, this paper introduces the WinORS 

Neuroeconomic Knowledge-based market trading System (WINKS).  The WINKS system is a dual radial 

basis function (RBF) artificial neural network (ANN) stock price (return) forecasting system that 

combines end-of-day (EOD) forecasts with intra-day forecasts to determine the quantities for intra-day or 

EOD transaction decisions.   

The paper proceeds as follows.  Section 2 introduces the stochastic integral model as a theory of 

trading an equity security for profitability.  Section 3 presents the relevant algorithms.
z
  Section 4 provides 
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a snapshot of how firm fundamental variables contribute to the production of profitable trades within the 

context of the WINKS high-frequency trading system.  Section 5 provides a summary and conclusion. 

2 The Stochastic Integral as a Model of Equity Trading Profits 

Stochastic calculus has rapidly become the language of financial modeling (see Brock et. al. (1992), 

for a discussion).  In this section we present a characterization of the Shreve (2004)  framework for use of 

the stochastic integral to characterize uncertain stock trading.  The methodology is developed in a manner 

that is designed to support the WINKS framework.  

Consider Xt to be the random variable of a stock’s market price at time t.  As in prior research, we 

assume that the price process X follows a geometric Brownian motion with a constant drift and volatility 

(For a in-depth development see Tsay (xxx)).  Next we define a trading strategy θ that determines the 

quantity θt (ω) of each security held in each state ω є Ω and at each time t.  The trading system envisioned 

by this approach assumes a market that is not characterized by the no-risk unlimited profit arbitrage effects 

of trading on advanced knowledge.  That is, θ is adapted and corresponds to the necessary restriction that 

the trading strategy can only make use of the available information at any time t.  This prevents the 

possibility of unlimited gains through high frequency trading or flash-crash trading (For description of 

May 6
th
, 2010 flash crash see: http://en.wikipedia.org/wiki/May_6,_2010_flash_crash) .  Note, the 

condition that θ is adapted implies that the stochastic integral will not diverge when calculated as a limit of 

Riemann sums.  Hence, given a price process X and a trading strategy θ that satisfies the no arbitrage 

conditions, the total financial gain   𝜃𝑢𝑑𝑋𝑢
𝑡

𝑠
 between any times s, t ≥ 0 is defined by Ito’s stochastic 

integral.  Since this is a continuous-time stochastic process, it is assumed that there is an underlying 

filtered probability space (Ω,V,(Vt)t≥0,Р).  The increasing sequence of σ-algebra of V,{𝑉𝑡 : 𝑡 ∈  0,∞ }, 

determines the relevant timing of information.  That is, Vt represents the information available up until 

time t, and is loosely viewed as the set of events whose outcomes are certain to be revealed to investors as 

true or false by, or at, time t.  Finally, the trading strategy θ is adapted if θt (ω) is Vt measurable.   

2.1 Buy and Hold 

The buy-hold (BH) strategy is a short-horizon element of the WINKS trading strategy captured by θ.  

Under the BH strategy an investor initiates a position immediately after some stopping time T and closes it 

at some later stopping time U.  For a position size θt (ω) that is Vt measurable, the trading strategy θ is 

defined by 𝜃𝑡 = 1 𝑇<𝑡≤𝑈 𝜃𝑡(𝜔) .  By definition, the gain from the BH trade strategy is the position size 

multiplied by the interim price change, or  𝜃𝑡𝑑𝑋𝑡 =  𝜃𝑡(𝑋𝑈 − 𝑋𝑇)
𝑈

0
.     

2.2 The N-Dimensional Trading Strategy 

A typical financial model allows for n different securities, with price process X1, …, Xn .  The investor 

can choose an associated N-dimensional trading strategy θ = (θ 1, …, θ n) for which the total gain from the 

equity trading process is:  𝜃𝑡𝑑𝑋𝑡  ≡    𝜃𝑖𝑡
𝑛
𝑖=1 𝑑𝑋𝑖𝑡 .  The technical restrictions that define the stochastic 

integrals can be augmented for the allowable set θ to include budget limits, credit constraints, short-sales 

restrictions or various other managerially imposed investment constraints. 

3 The Automated Trading System and the Production of Profitability 

The prediction and mapping capabilities of ANNs in general, and the RBF topology specifically, has 

resulted in an extraordinary amount of interest in applying various ANN algorithmic topologies to stock 

market prediction and forecast behavior (for example, see Refenes, P., et.al. (1996)).  The usefulness of 

RBF ANNs continues to be exploited in complex financial optimization and mapping studies as this 

particular ANN topology does not require a parametric system model and tends to be relatively insensitive 

to chaotic appearing data patterns (Dash and Kajiji (2008)) . The objectives for this section of the paper 

are twofold.  The first objective is to specify the K4-RBF ANN that provides both EOD and 20-minute 

ahead forecasts for individual securities is described.  The second objective for this section is to define the 

WINKS decision algorithm system in pseudo detail.  Like many auto trading systems WINKS relies upon 

the prediction of price at time period t+1 given a price observation at time t with a known information set, 

θ.   Within WINKS the functional form of all prediction models (both the EOD and 20-minute ahead 

forecasts) is as follows: 

http://en.wikipedia.org/wiki/May_6,_2010_flash_crash


𝑥𝑡+1 = 𝑓𝜃 𝑥𝑡 , 𝑃1,𝑡 , 𝑃2,𝑡 , … , 𝑃𝑘,𝑡    𝜃) (1) 

Where xt is the price of the target security at time t and Pi ,…, Pk captures the set of k exogenous predictor 

variables.   

3.1 High-Frequency Neuroeconomics for Stock Price Forecasting 

The automated trading algorithm employed by WINKS is based upon the K4-RBF ANN (2001).  

WINKS employs this ANN to produce an analytic approximation for the next period stock return by 

mapping the noisy exogenous data stream which may be described as follows, 

{[𝑥 𝑘 , 𝑦𝑖 ∶  ℝ
𝑛 , ℝ }𝑘=1

𝑚  (2)
 

where  x(k) is the input vector for predictor k, yi is the output for stock i, and n is the dimension of the 

input space, and m is the number of basis functions.  The data is drawn from the noisy set:   

{[𝑦𝑖 = 𝑓[𝑥 𝑘 + є]}𝑘=1
𝑚  (3) 

As shown in figure 1, the RBF ANN topology is defined by three layers: the input layer, the hidden 

layer (linear layer) and the output layer.  The input layer has no particular calculating power; its primary 

function is to distribute the information to the hidden layer of the RBF network.  The hidden, or middle, 

layer embraces computing units, or hidden nodes.  Each hidden node is defined by a center.  The center, 

c(k), is a parameter vector of the same dimension as the input data vector, x(k), and calculates the 

Euclidean distance between the center and the network input vector x defined by ‖𝑥 𝑘 −  𝑐(𝑘)‖.  The 

results are passed through a nonlinear activation function, ∅ 𝑘 , to produce output from the hidden nodes.  

The Gaussian basis function shown in eq. 4 is a widely used approach to establish the activation function. 

∅ 𝑘 =  𝑒𝑥𝑝  
‖𝑥 𝑘 − 𝑐(𝑘)‖2

𝜎𝑗
2  ,     𝑗 = 1 . . . 𝑚 (4) 

where σj  is a positive scalar and is referred to as the width of the center.    The output layer is a linear 

combiner with the ith output of the network model being a weighted sum of the hidden nodes:  

𝑦 𝑖 =   ∅ 𝑘 𝑚
𝑗=1 𝑤𝑗 ,       𝑖 = 1 . . . 𝑝 (5) 

where p is the number of outputs (generally p = 1), w represents output layer weights, and 𝑦  is the network 

output to estimate the target y.  For generalizations see Haykin (1994).  

The Kajiji (2001) extension to the traditional RBF ANN specification introduced multiple objectives 

within a Bayesian RBF ANN framework.  By adding a weight penalty term to the SSE optimization 

objective, the modified SSE is restated as the following cost function: 

𝐶 =    𝑦 𝑖 − 𝑓(𝑥𝑖) 
2 +  𝑣𝑗𝑤𝑗

2𝑚
𝑗=1

𝑝
𝑖=1  (6) 

where: vj are regularization parameters or weight decay parameters.  Under this specification the function 

to be minimized is stated as: 

𝐶 =  
𝑎𝑟𝑔𝑚𝑖𝑛

𝑣
 𝜁   𝑦𝑖 − 𝑓 𝑥𝑖  𝑣 ) 

2 +   𝑣𝑗𝑤𝑗
2𝑚

𝑗=1
𝑝
𝑖=1   (7) 

In early implementations of the RBF topology, iterative techniques were commonly employed to 

compute the weight decay vector 𝑣.  The extensions embraced by the K4-RBF ANN allow the dual-

objective, multiple criteria decision analytic (MCDA) algorithm to directly attack the twin evils that deter 

efficient ANN modeling: the “curse” of dimensionality (multicollinearity or over-parameterization) and 

inflated residual sum of squares (inefficient weight decay).  The benefit to WINKS is straightforward.  

First, the excellent mapping capabilities of the RBF topology are applied to the generalized- volatility 

forecasting problem inherent in all price forecasting systems.  Second, the algorithmic speed generated by 

K4-RBF ANN enhancements permit the computational algorithm to operate in a high-frequency 

forecasting environment for thousands of securities. 



3.2 The WINKS Automated Trading Algorithm 

The inherited computational commonality among decision theory, the cognitive sciences, artificial 

intelligence (AI) and operations research has been well established in the literature (see, Zimmerman 

(1991) for a review).  As shown in the flow-chart (figure 2), the WINKS automated trading algorithm is an 

N-dimensional cognitive decision making engine that generates probability judgment(s) and an 

information search in response to a diagnosis of human hypotheses when presented with new trading-

oriented data.   The process is based on a high-frequency (daily) and ultra-high frequency (intraday) 

system that executes one RBF ANN to produce a 20-minute BH investment decision which is compared to 

the daily EOD investment horizon forecast that is generated by a separate RBF ANN model over the 

course of a one-day investment horizon.    

3.3 WINKS Performance 

The complete results of comparing the buy-and-hold strategy (BH) to the continuous process of 

automated trading (e.g., WINKS) are left for a longer version of this work.  Table 1 presents an 

abbreviated comparison of the results produced by BH and WINKS.  We note that trading efficiency is 

defined as: ((WINKS trade profit – BH trade profit) / Initial $ Investment).  Positive and negative trades 

are indicated by +ve / -ve, respectively. 

Table 1: Comparison of Buy-Hold v/s Trading: June 01, 2009 to March 19, 2010 

Equity 

Ticker 

BH 

Profit 

BH 

Annualized 

RoR 

WINKS 

Trading 

Profit 

WINKS 

Annualized 

RoR 

WINKS

+ve 

Trades 

WINKS

-ve 

Trades 

WINKS 

Trading 

Efficiency 

TVL $1925 140% $2402 172% 45 14 48% 

WLL $700 55% $912 71% 40 17 22% 

PLCE $229 18% $850 66% 26 16 63% 

CMED $(339) -29% $806 62% 41 21 116% 

ILMN $24 2% $632 49% 26 16 61% 

4 Firm Fundamental Factors that Produce Efficient Positive Trades 

In this section of the research we investigate the relationship between firm fundamental 

characteristics and percent positive trades.  Over the past 40 years, a large body of research has evolved to 

explore specific characteristics (beyond market beta) that are known to have a significant explanatory 

effect on average market returns.  For the purpose of estimating the joint roles contributed by market beta 

and firm specific variables the extant literature is uniquely reliant on the classic study of Fama and French 

(1993).  The result of these studies has established a role for a size factor, and a book-to-market factor.  

Carhart (1997) extended cross-section modeling to include a fourth factor, a momentum effect, to 

encapsulate market risk.  We specifically note recent applications of the Carhart model to identify 

international market factors (see, Lam, Li and So, (2009)).  Unlike financial econometric studies that focus 

on portfolio theoretic implications, this research seeks to identify individual firm-level factors that 

efficiently produce profitable trading opportunities when merged with BDT modeling.  To this end, we 

invoke the artificial intelligence approach encapsulated in a RBF neural network to extract nonparametric 

quasi-elasticity estimates of the relative contribution provided by firm fundamental variables to the 

process of producing trading profitability.  However, the experiment provided below is guided by the 

portfolio-theoretic findings as reviewed. 

4.1 Elasticity 

The derivative is commonly used to compute the percentage rate of change of a function.  It is well 

known that for the function y = f(x), the unit free average elasticity, Ey/x  , of the variable y with respect to 

the variable x is given by the ratio:  Ey/x =  
%∆y

%∆x
  .  For estimation purposes we implement 

ln 𝑦 = ln 𝐴 +  𝛽𝑖 ln 𝑥𝑖 
𝑛
𝑖=1 , 𝛽𝑖 > 0  (8) 

In a manner that is consistent with the properties stated above, all inputs are interchangeable and each 

input must be used in strictly positive amounts to obtain a positive output.   



4.2 Nonparametric Estimation of Fundamental Trading Predictors 

For the primary analysis, we begin with a time series of 20-minute price observations for 2,225 

securities from all U.S. trading dates from June 01, 2009 to March 19, 2010 inclusive.  To eliminate 

structural biases in the econometric analysis of trading performance we eliminate all non-equity stocks and 

those equities that do not have Yahoo! supported fundamental characteristics.  Upon completing data 

reduction procedures a full-sample size of 1,765 is produced.  For efficient cross-sectional modeling we 

sample from within the full content population.  The data sampling is guided by the use of the target 

variable of the study – percent positive trades (PPT): 

% Positive Trades =  Round 
# positive  trades

total  # trades
 x 100  (9) 

The scatter plot of percent positive trades is shown in figure 3.  Immediately obvious is the implied 

lower/upper bands at approximately 30% and 80%, respectively. 

Figure 3:  Percent Positive Trades by Security on March 19, 2010  

 

4.2.1 Neural Network Modeling and Cognitive Decision Theory 

As reported by Patterson (1996) ANNs are complex computational algorithms that trace their roots to 

modeling low-level structures of the human brain.  Recent research authored by Lewicki, Hill, and 

Czyzewska (1992) in the cognitive science of non-conscious information processing has demonstrated the 

efficiency of the human brain to learn simple input-output co-variations from extremely complex stimuli.  

To prepare for the K4-RBF ANN, we create a training sample from the cross-sectional observations.  The 

full sample of 1,765 securities is separated into four strata based on the value of the target variable.  After 

strata creation, we compute the standard deviation of the % positive trades variable and then compute the 

sample size n at the 95% confidence interval with a minimum error rate (E) of 0.75.  This process results 

in the selection of 793 securities for the training set.   

4.2.2 Nonparametric Quasi-Elasticity Estimation 

To estimate a nonparametric production theoretic model, we identify the functional form with one 

target variable and the set of predictor variables: pi = f(P1, P2, P3, P4), where pi is the PPT for each ith 

security; P1 is the individual security Vasicek adjusted beta, P2 is book/price ratio computed from 

annualized book value and the last observed trade price, P3 is the security’s current market capitalization; 

and, P4 is the Yahoo! Provided: % change from 50 day MA (moving average). 

4.3 Firm Fundamentals for Systemic Prediction of Profitable Trades 

The overall statistical efficiency of several alternative ANN solutions is presented in table 2.  The 

solutions are differentiated by the choice of data transformation functions implemented prior to training 

and validation.  Model Norm:2 is deemed to be the most efficient solution .   

 



Table 2: K4 Analysis Using Softmax Transfer Function. 

Description Norm:2
a
 Norm:1 STD:1 

Validation Error 7.19E-04 9.54E-03 1.11E-04 

Fitness Error 8.49E-04 1.07E-02 1.02E-04 

R-Square 99.12% 90.42% 99.89% 

AIC -12472 -7994 -16197 

Schwarz -12450 -7972 -16175 

                       a: Selected data transformation 

Table 3 provides an interpretation of the Norm:2 model quasi-elasticity estimate (RBF weight).  

Table 3: Weights of Comparative Models 

Variables / Interpretation for Norm:2 Norm:2 Norm:1 STD:1 

Ln(Abs(Vasicek’s Beta)) 

A 10% increase in Vi will result in just under a 1.6% decrease in 

Percent positive Trades (PPT) 

-0.157 -0.060 -1.993 

Ln(Abs(Book To Last Trade Price)) 

A 10% increase in Vi will result in a 5.5% decrease in PPT 
-0.546 1.478 -2.592 

Ln(Market Capitalization / 10000 ) 

A 10% increase in Vi will result in a 13.9% increase in PPT 
1.387 0.544 1.691 

Ln(% Change From 50 Day MA) 

A 10% increase in Vi will result in a 2% decrease in PPT 
-0.200 -0.948 -0.233 

 

5 Summary and Conclusion 

First, this paper provides a synthesis of stochastic equity price behavior and the cognitive science of 

trading by the use of K4-RBF modeled ANN.  WINKS is an MCDA trading algorithm that integrates the 

AI properties of two unique, but coordinated, high-frequency RBF ANNs.  The results of executing 

WINKS over the test period produced transaction cost adjusted trading profits that exceeded those 

generated by the simple buy-and-hold strategy.  Second, WINKS performance was modeled using firm 

fundamentals to uncover the factors that generate PPT. It was argued that the effective use of WINKS 

across global markets is potentially enhanced by the pre-selection of stocks based on the estimated quasi-

elasticity estimates (RBF weights).  Alternate performance comparisons are left for future research. 
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